Skip to main content
Log in

High-resolution Measurement of Contact Ion-pair Structures in Aqueous RbCl Solutions from the Simultaneous Corefinement of their Rb and Cl K-edge XAFS and XRD Spectra

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In concentrated solutions of aqueous RbCl, all of the Rb+ and Cl ions exist as contact ion pairs. This full structural assessment is derived from the refinement of three independent experimental measurements: the Rb and Cl K-edge X-ray absorption fine structure (XAFS) and the X-ray diffraction spectra (XRD). This simultaneous refinement of the XAFS and XRD data provides high accuracy since each method probes the structure of different local regions about the ions with high sensitivity. At high RbCl concentration (6 mol·kg–1) the solution is dominated by Rb+–Cl contact ion pairs yielding an average of 1.5 pairs at an Rb–Cl distance of 3.24 Å. Upon formation of these ion pairs, approximately 1.1 waters molecules are displaced from the Rb+ and 1.4 water molecules from Cl. The hydration shells about both the cation and anion are also determined. These results greatly improve the understanding of monovalent ions and provide a basis for testing the Rb+–Cl interaction potentials used in molecular dynamics (MD) simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marcus, Y., Hefter, G.: Ion-pairing. Chem. Rev. 106, 4585–4621 (2006)

    Article  CAS  Google Scholar 

  2. Debye, P., Hückel, E.: The theory of electrolytes. I. Lowering of freezing point and related phenomena. Phys. Z. 24, 185–206 (1923)

    CAS  Google Scholar 

  3. Bjerrum, N.: Investigations on association of ions. I. The influence of association of ions on the activity of the ions at intermediate degrees of association. Kgl. Danske Vid. Selsk. Math.-fys. Medd. 7(9) (1926)

  4. Fuoss, R.M.: Ionic association. III. The equilibrium between ion pairs and free ions. J. Am. Chem. Soc. 80, 5059–5061 (1958)

    Article  CAS  Google Scholar 

  5. Pitzer, K.S.: Thermodynamics of electrolytes 2. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77(19), 2300–2308 (1973)

    Article  CAS  Google Scholar 

  6. Jungwirth, P., Cremer, P.S.: Beyond Hofmeister. Nat. Chem. 6, 261–263 (2014)

    Article  CAS  Google Scholar 

  7. Zhang, Q., Zhang, X., Zhao, D.X.: Ion disturbance and clustering in the NaCl water solutions. J. Mol. Model. 19, 661–672 (2013)

    Article  Google Scholar 

  8. Luksic, M., Fennell, C.J., Dill, K.A.: Using interpolation for fast and accurate calculation of ion–ion interactions. J. Phys. Chem. B 118, 8017–8025 (2014)

    Article  CAS  Google Scholar 

  9. Fennell, C.J., Bizjak, A., Vlachy, V., Dill, K.A.: Ion pairing in molecular simulations of aqueous alkali halide solutions. J. Phys. Chem. B 113, 6782–6791 (2009)

    Article  CAS  Google Scholar 

  10. Leontyev, I., Stuchebrukhov, A.: Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 13, 2613–2626 (2011)

    Article  CAS  Google Scholar 

  11. Pegado, L., Marsalek, O., Jungwirth, P., Wernersson, E.: Solvation and ion-pairing properties of the aqueous sulfate anion: explicit versus effective electronic polarization. Phys. Chem. Chem. Phys. 13, 10248–10257 (2012)

    Article  Google Scholar 

  12. Timko, J., Bucher, D., Kuyucak, S.: Dissociation of NaCl in water from ab initio molecular dynamics simulations. J. Chem. Phys. 132, 114510 (2010)

    Article  Google Scholar 

  13. Timko, J., DeCastro, A., Kuyucak, S.: Ab initio calculation of the potential of mean force for dissociation of aqueous \({\rm CaCl}_{2}\). J. Chem. Phys. 134, 204510 (2011)

    Article  Google Scholar 

  14. Gill, J.B.: Solute-solute interactions in liquid ammonia solutions: a vibrational spectroscopic view. Pure Appl. Chem. 53, 1365–1381 (1981)

    Article  CAS  Google Scholar 

  15. Fedotova, M.V.: Structure of aqueous RbCl solutions with different concentrations based on an analysis of pair correlation functions. Russ. J. Phys. Chem. A 85, 2142–2147 (2011)

    Article  CAS  Google Scholar 

  16. Fedotova, M.V., Kruchinin, S.E., Rahman, H.M.A., Buchner, R.: Features of ion hydration and association in aqueous rubidium fluoride solutions at ambient conditions. J. Mol. Liq. 159, 9–17 (2011)

    Article  CAS  Google Scholar 

  17. Pham, V.T., Fulton, J.L.: Ion-pairing in aqueous \({\rm CaCl}_2\) and RbBr solutions: simultaneous structural refinement of XAFS and XRD data. J. Chem. Phys. 138, 44201 (2013)

    Article  Google Scholar 

  18. Bowron, D.T.: Comprehensive structural modelling of aqueous solutions using neutron diffraction and X-ray absorption spectroscopy. J. Phys.: Conf. Ser. 190, 12022 (2009)

    Google Scholar 

  19. Bertagnolli, H., Ertel, T.S., Hoffmann, M.: EXAFS studies of aqueous solutions of rubidium bromide. Ber. Bunsenges. Phys. Chem. 95, 704–709 (1991)

    Article  CAS  Google Scholar 

  20. Enderby, J.E., Neilson, G.W.: The structure of electrolyte solutions. Rep. Prog. Phys. 44, 593–653 (1981)

    Article  Google Scholar 

  21. Enderby, J.E., Cummings, S., Herdman, G.J., Neilson, G.W., Salmon, P.S., Skipper, N.: Diffraction and the study of aqua ions. J. Phys. Chem. 91, 5851–5858 (1987)

    Article  CAS  Google Scholar 

  22. Soper, A.K.: Partial structure factors from disordered materials diffraction data: an approach using empirical potential structure refinement. Phys. Rev. B 72, 104204 (2005)

    Article  Google Scholar 

  23. Megyes, T., Grosz, T., Radnai, T., Bako, I., Palinkas, G.: Solvation of calcium ion in polar solvents: an X-ray diffraction and ab initio study. J. Phys. Chem. A 108, 7261–7271 (2004)

    Article  CAS  Google Scholar 

  24. Fulton, J.L., Balasubramanian, M.: Structure of hydronium (\({\rm H}_3{\rm O}^{+})/{\rm chloride}({\rm Cl}^{-}\)) contact ion pairs in aqueous hydrochloric acid solution: a Zundel-like local configuration. J. Am. Chem. Soc. 132, 12597–12604 (2010)

    Article  CAS  Google Scholar 

  25. Fulton, J.L., Balasubramanian, M., Pham, V.T., Deverman, G.S.: A variable ultra-short pathlength solution cell for XAFS transmission spectroscopy of light elements. J. Synchrotron Rad. 19, 949–953 (2012)

    Article  CAS  Google Scholar 

  26. Qiu, X., Thompson, J.W., Billinge, S.J.L.: PDFgetX2: A GUI driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Cryst. 37, 678 (2004)

    Article  CAS  Google Scholar 

  27. Rehr, J., Kas, J., Prange, M., Sorini, A., Takimoto, Y., Vila, F.: Ab initio theory and calculations of X-ray spectra. C. R. Phys. 10, 548–559 (2009)

    Article  CAS  Google Scholar 

  28. McMaster, W.H., Kerr-Del Grande, N., Mallett, J.H., Hubbell, J.H.: Compilation of X-ray cross sections. UCRL-50174 Sec. II Rev. 1 Livermore (1969)

  29. Fulton, J.L., Pfund, D.M., Wallen, S.L., Newville, M., Stern, E.A., Ma, Y.: Rubidium ion hydration in ambient and supercritical water. J. Chem. Phys. 105(6), 2161 (1996)

    Article  CAS  Google Scholar 

  30. D’ Angelo, P., Persson, I.: Structure of the hydrated and dimethyl sulfoxide solvated rubidium ions in solution. Inorg. Chem. 43, 3543–3549 (2004)

  31. Fulton, J.L., Chen, Y., Heald, S.M., Balasubramanian, M.: Hydration and contact ion pairing of Ca2+ with Cl in supercritical aqueous solution. J. Chem. Phys. 125, 94507 (2006)

    Article  Google Scholar 

  32. D’ Angelo, P., Nola, A. Di, Giglio, E., Mangoni, M., Pavel, N. V. : EXAFS study of micellar aggregates of bile acid rubidium salts. J. Phys. Chem. 99, 5471–5480 (1995)

  33. Spanjers, C.S., Senftle, T.P., van Duin, A.C.T., Janik, M.J., Frenkel, A.I., Rioux, R.M.: Illuminating surface atoms in nanoclusters by differential X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 16, 26528–26538 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

VTP was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.99-2013.19. Work by JLF was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, are supported by DOE/BES, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, was supported by the DOE under Contract No. DE-AC02-06CH11357. Dr. F. Baudelet is acknowledged for constructive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Thai Pham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, VT., Fulton, J.L. High-resolution Measurement of Contact Ion-pair Structures in Aqueous RbCl Solutions from the Simultaneous Corefinement of their Rb and Cl K-edge XAFS and XRD Spectra. J Solution Chem 45, 1061–1070 (2016). https://doi.org/10.1007/s10953-016-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0487-5

Keywords

Navigation