Skip to main content
Log in

Combination of Sodium Dodecylsulfate and 2,2′-Bipyridine for Hundred Fold Rate Enhancement of Chromium(VI) Oxidation of Malonic Acid at Room Temperature: A Greener Approach

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Chromic acid oxidation of malonic acid in aqueous media has been investigated spectrophotometrically at 303 K. The product glyoxylic acid has been characterized by 13C-NMR and FTIR spectroscopy. Three representative N-heteroaromatic nitrogen base promoters, 2-picolinic acid, 2,2′-bipyridine (bpy) and 1,10-phenanthroline, in combination with the anionic surfactant sodium dodecylsulfate (SDS) enhanced the rate of the oxidation reaction compared to the unpromoted reaction. 2,2′-Bipyridine produced the maximum rate enhancement of the three promoters used. The mechanism of the reaction has been proposed with the help of kinetic results and spectroscopic studies. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. The SDS and bpy combination is suitable for malonic acid oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Daniel, J.B., Darren, J.L.: Green chemistry for organic solar cells. Energy Environ. Sci. 6, 2053–2066 (2013)

    Article  Google Scholar 

  2. Saha, D., Ghosh, A., Saha, B.: Combination of the most efficient promoter and micellar catalyst for rate enhancement of chromic acid oxidation on 2-butanol to 2-butanone conversion in aqueous media at room temperature. Res. Chem. Intermed. 41, 8527–8544 (2015)

    Article  CAS  Google Scholar 

  3. Malik, S., Saha, B.: Combination of best promoter and micellar catalyst for chromic acid oxidation of d-arabinose in aqueous media at room temperature. Tenside Surfactant Deterg. 52, 502–511 (2015)

    Article  CAS  Google Scholar 

  4. Saha, R., Ghosh, A., Saha, B.: Combination of best promoter and micellar catalyst for chromic acid oxidation of 1-butanol to 1-butanal in aqueous media at room temperature. Spectrochim. Acta Part A 124, 130–137 (2014)

    Article  CAS  Google Scholar 

  5. Ghosh, A., Saha, R., Ghosh, S.K., Mukherjee, K., Saha, B.: Selection of suitable micellar catalyst for 1,10-phenanthroline promoted chromic acid oxidation of formic acid in aqueous media at room temperature. J. Korean Chem. Soc. 57, 703–711 (2013)

    Article  CAS  Google Scholar 

  6. Ghosh, A., Saha, R., Mukherjee, K., Ghosh, S.K., Sar, P., Malik, S., Saha, B.: Choice of suitable micellar catalyst for 2,2′-bipyridine promoted chromic acid oxidation of glycerol to glyceraldehyde in aqueous media at room temperature. Res. Chem. Intermed. 41, 3057–3078 (2015)

    Article  CAS  Google Scholar 

  7. Ghosh, A., Saha, R., Mukhejee, K., Ghosh, S.K., Bhattacharyya, S.S., Laskar, S., Saha, B.: Selection of suitable combination of nonfunctional micellar catalyst and hetero-aromatic nitrogen base as promoter for chromic acid oxidation of ethanol to acetaldehyde in aqueous medium at room temperature. Int. J. Chem. Kinet. 45, 175–186 (2013)

    Article  CAS  Google Scholar 

  8. Saha, R., Ghosh, A., Saha, B.: Kinetics of micellar catalysis on oxidation of p-anisaldehyde to p-anisic acid in aqueous medium at room temperature. Chem. Eng. Sci. 99, 23–27 (2013)

    Article  CAS  Google Scholar 

  9. Nongkynrih, I., Mahanti, M.K.: Quinolinium dichromate oxidations. Kinetics and mechanism of the oxidative cleavage of styrenes. J. Org. Chem. 58, 4925–4928 (1993)

    Article  CAS  Google Scholar 

  10. Rappe, A.K., Jaworska, M.: Mechanism of chromyl chloride alkane oxidation. J. Am. Chem. Soc. 125, 13956–13957 (2003)

    Article  CAS  Google Scholar 

  11. Wiberg, K.B., Lepse, P.A.: The oxidation of aromatic aldehydes by chromyl acetate. J. Am. Chem. Soc. 86, 2612–2619 (1964)

    Article  CAS  Google Scholar 

  12. Thakur, R., Ranjan, R.: Oxidative degradation and associated complexation study of citric acid by di-tertiary butyl chromate. Asian J. Res. Chem. 8, 657–660 (2015)

    Article  Google Scholar 

  13. Rao, I., Mishra, S.K., Sharma, P.D.: Kinetics and mechanism of oxidation of malonic acid by chromium(VI) in aqueous perchlorate medium. Transition Met. Chem. 17, 449–454 (1992)

    Article  CAS  Google Scholar 

  14. Barkin, S., Bixon, M., Noyes, R.M., Bar-Eli, K.: On the oxidation of malonic acid by ceric ions. Int. J. Chem. Kinet. 10, 619–636 (1978)

    Article  CAS  Google Scholar 

  15. Treindl, L., Mrakavova, M.: Kinetic study of the oxidation of malonic acid by the manganese(III) ions. Chem. Zvesti 36, 627–632 (1982)

    CAS  Google Scholar 

  16. Masłowska, J., Duda, J., Witusik, A.: Use of 2,4-dinitrophenylhydrazone of glyoxylic acid for the determination of glyoxylic acid by the chromatographic–spectrophotometric method and by differential pulse polarography. Fresenius J. Anal. Chem. 355, 154–156 (1996)

    Google Scholar 

  17. Sundaram, S., Raghavan, P.S.: Chromium-VI Reagents, Synthetic Application. Springer, Berlin (2011)

    Book  Google Scholar 

  18. Sorella, G.L., Strukul, G., Scarso, A.: Recent advances in catalysis in micellar media. Green Chem. 17, 644–683 (2015)

    Article  Google Scholar 

  19. Katre, Y., Singh, M., Patil, S., Singh, A.K.: Effect of cationic micellar aggregates on the kinetics of dextrose oxidation by N-bromophthalimide. J. Dispersion Sci. Technol. 29, 1412–1420 (2008)

    Article  CAS  Google Scholar 

  20. Mandal, A.K., Thanigaivelan, U., Pandey, R.K., Asthana, S., Khomane, R.B., Kulkarni, B.D.: Preparation of spherical particles of 1,1-diamino-2,2-dinitroethene (FOX-7) using a micellar nanoreactor. Org. Process Res. Dev. 16, 1711–1716 (2012)

    Article  CAS  Google Scholar 

  21. Blanazs, A., Armes, S.P., Ryan, A.J.: Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol. Rapid Commun. 30, 267–277 (2009)

    Article  CAS  Google Scholar 

  22. Saha, R., Ghosh, A., Saha, B.: Micellar catalysis on 1,10-phenanthroline promoted hexavalent chromium oxidation of ethanol. J. Coord. Chem. 64, 3729–3739 (2011)

    Article  CAS  Google Scholar 

  23. De, S., Malik, S., Ghosh, A., Saha, R., Saha, B.: A review on natural surfactants. RSC Adv. 5, 65757–65782 (2015)

    Article  CAS  Google Scholar 

  24. Mondal, M.H., Malik, S., Roy, A., Saha, R., Saha, B.: Modernization of surfactant chemistry in the age of Gemini and bio-surfactants: a review. RSC Adv. 5, 92707–92718 (2015)

    Article  CAS  Google Scholar 

  25. Astray, G., Cid, A., Manso, J.A., Mejuto, J.C., Moldes, O., Morales, J.: Influence of anionic and nonionic micelles upon hydrolysis of 3-hydroxy-carbofuran. Int. J. Chem. Kinet. 43, 402–408 (2011)

    Article  CAS  Google Scholar 

  26. Malik, S., Ghosh, A., Mukherjee, K., Saha, B.: Combination of best promoter and micellar catalyst for Cr(VI) oxidation of lactose to lactobionic acid in aqueous medium at room temperature. Tenside Surfactant Deterg. 51, 325–332 (2014)

    Article  CAS  Google Scholar 

  27. Malik, S., Ghosh, A., Saha, B.: Hetero-aromatic nitrogen base promoted Cr(VI) oxidation of butanal in aqueous micellar medium at room temperature and atmospheric pressure. J. Solution Chem. 45, 109–125 (2016)

    Article  CAS  Google Scholar 

  28. Sharma, M., Sharma, G., Agrawal, B., Khandelwal, C.L., Sharma, P.D.: Kinetics and mechanism of electron transfer reactions. Osmium(VIII) catalyzed oxidation of mannitol by hexacyanoferrate(III) in aqueous alkaline medium. Met. Chem. 30, 546–551 (2005)

    Article  CAS  Google Scholar 

  29. Sumathi, T., Shanmugasundaram, P., Chandramohan, G.: A kinetic and mechanistic study on the silver (I)-catalyzed oxidation of l-alanine by cerium(IV) in sulfuric acid medium. Arab. J. Chem. 4, 427–435 (2011)

    Article  CAS  Google Scholar 

  30. Zhai, Y., Liu, H., Liu, B., Liu, Y., Xiao, J., Bai, W.: Kinetics and mechanism of ruthenium(III) catalyzed oxidation of tetrahydrofurfuryl alcohol by cerium(IV) in sulfuric acid media. Trans. Met. Chem. 32, 570–575 (2007)

    Article  CAS  Google Scholar 

  31. Domínguez, A., Fernández, A., González, N., Iglesias, E., Montenegr, L.: Determination of critical micelle concentration of some surfactants by three techniques. J. Chem. Educ. 74, 1227–1231 (1997)

    Article  Google Scholar 

  32. Wu, C., Li, N.J., Chen, K.C., Hsu, H.F.: Determination of critical micelle concentrations of ionic and nonionic surfactants based on relative viscosity measurements by capillary electrophoresis. Res. Chem. Intermed. 40, 2371–2379 (2014)

    Article  CAS  Google Scholar 

  33. Khan, A.M., Shah, S.S.: Determination of critical micelle concentration (CMC) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its CMC using ORIGIN software. J. Chem. Soc. Pak. 30, 186–191 (2008)

    CAS  Google Scholar 

  34. Banerji, J., Kótai, L., Sharma, P.K., Banerji, K.K.: Kinetics and mechanism of the oxidation of substituted benzaldehyde with bis(pyridine) silver permanganate. Eur. Chem. Bull. 1, 135–140 (2012)

    CAS  Google Scholar 

  35. Ghosh, A., Saha, R., Saha, B.: Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous media. J. Ind. Eng. Chem. 20, 345–355 (2014)

    Article  CAS  Google Scholar 

  36. Kumar, L., Mahajan, T., Agarwal, D.D.: Aqueous bromination method for the synthesis of industrially-important intermediates catalyzed by micellar solution of sodium dodecyl sulfate (SDS). Ind. Eng. Chem. Res. 51, 2227–2234 (2012)

    Article  CAS  Google Scholar 

  37. Onel, L., Buurma, N.J.: The nature of the sodium dodecylsulfate micellar pseudophase as studied by reaction kinetics. J. Phys. Chem. B 115, 13199–13211 (2011)

    Article  CAS  Google Scholar 

  38. Mukherjee, K., Ghosh, A., Saha, R., Sar, P., Malik, S., Saha, B.: Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose. Spectrochim. Acta Part A 122, 204–208 (2014)

    Article  CAS  Google Scholar 

  39. Saha, R., Ghosh, A., Sar, P., Saha, I., Ghosh, S.K., Mukherjee, K., Saha, B.: Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of d-galactose to d-galactonic acid in aqueous media at room temperature. Spectrochim. Acta Part A 116, 524–531 (2013)

    Article  CAS  Google Scholar 

  40. Samiey, B., Cheng, C.H., Wu, J.: Effects of surfactants on the rate of chemical reactions. J. Chem. 2014, 1–16 (2014)

    Article  Google Scholar 

  41. Mukherjee, K., Saha, R., Ghosh, A., Ghosh, S.K., Saha, B.: Efficient combination of promoter and catalyst for chromic acid oxidation of propan-2-ol to acetone in aqueous acid media at room temperature. Spectrochim. Acta Part A 101, 294–305 (2013)

    Article  CAS  Google Scholar 

  42. Ghosh, S.K., Ghosh, A., Saha, R., Saha, B.: Micellar catalysis on 1,10-phenanthroline promoted chromic acid oxidation of glycerol in aqueous media. Tenside Surfactant Deterg. 49, 370–375 (2012)

    Article  CAS  Google Scholar 

  43. Ghosh, S.K., Basu, A., Saha, R., Ghosh, A., Mukherjee, K., Saha, B.: Micellar catalysis on picolinic acid promoted hexavalent chromium oxidation of glycerol. J. Coord. Chem. 65, 1158–1177 (2012)

    Article  CAS  Google Scholar 

  44. Khan, Z., Masan, S., Raju, Ud-Din, K.: A mechanistic study of the ethylenediaminetetraacetic acid-, 2,2′-bipyridyl-, and manganese(II)-assisted one-step two- and three-electron oxidation of lactic acid by chromium(VI). Trans. Met. Chem. 28, 881–887 (2003)

    Article  CAS  Google Scholar 

  45. Viana, R.B., daSilva, A.B.F., Pimentel, A.S.: Infrared spectroscopy of anionic, cationic and zwitterionic surfactants. Adv. Phys. Chem. 2012, 1–14 (2012)

    Article  Google Scholar 

  46. Dubey, N., Pal, A.: Micellar solubilization of octan-1-ol in aqueous solutions of SDBS and TTAB. J. Mol. Liq. 172, 12–19 (2012)

    Article  CAS  Google Scholar 

  47. Srinivasan, V., Rocek, J.: Formation of a long-lived chromium(V) intermediate in the chromic acid oxidation of oxalic acid. J. Am. Chem. Soc. 96, 127–133 (1974)

    Article  CAS  Google Scholar 

  48. Hasan, F., Rocek, J.: The chromium(V1) oxidation of oxalic acid. J. Am. Chem. Soc. 94, 9073–9081 (1972)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all the members of Homogeneous Catalysis Laboratory for their constant support and varied assistance to overcome the experiments and we also acknowledge UGC-RGNF, India and CSIR [(Grant- 01(2463)/11/EMR-II)], New Delhi, India, for providing financial help in the form of fellowship and project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyut Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, S., Mondal, M.H., Ghosh, A. et al. Combination of Sodium Dodecylsulfate and 2,2′-Bipyridine for Hundred Fold Rate Enhancement of Chromium(VI) Oxidation of Malonic Acid at Room Temperature: A Greener Approach. J Solution Chem 45, 1043–1060 (2016). https://doi.org/10.1007/s10953-016-0494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0494-6

Keywords

Navigation