We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Calculation of Relative Solubility of Semipolar Solvents by Abraham Solvation Parameter Model for Extractables and Leachables Analysis in Chemical Characterization of Medical Devices

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Organic solvents of different polarities (polar, semipolar, and nonpolar) are typically used in extraction studies on medical devices for chemical characterization of their constituents (called extractables or leachables, E/L) potentially exposed to patients during clinical uses per ISO 10993-18 (2020). This study evaluates the difference in solubility of semipolar solvents relative to ethanol for a wide range of E/L in hydrophobicity to help the selection of semipolar solvents for extraction studies. The solvents studied include methanol, ethanol, 1-propanol, 2-propanol (IPA), acetonitrile (ACN), acetone, dioxane, dimethylacetamide (DMA), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and ethylene glycol. A quantitative analysis of solubility difference (relative to ethanol) among these commonly used semipolar organic solvents over a wide hydrophobicity range based on Abraham general solvation model is presented. These semipolar solvents are also classified according to their solvation properties. The results of the calculation include a slope parameter with respect to hydrophobicity (\({{\text{log}}}_{10}{P}_{\text{O}/\text{W}}\) to describe the solubility ratio changes with an increase in E/L hydrophobicity, and an intercept parameter to describe the relative solubility for more polar E/L compounds. The calculation results are also corroborated by other solvent strength parameters. A recommendation on the rational selection of semipolar solvents in extraction studies is finally provided based on the two parameters, extraction type, and instrumental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Ref. [20]

Fig. 2

Adapted from Ref. [22]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ISO10993-1:2018, Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process.

  2. ISO10993-18:2020, Biological evaluation of medical devices — Part 18: Chemical characterization of medical device materials within a risk management process.

  3. Jenke, D.: Identification, analysis and safety assessment of leachables and extractables. TrAC Trends Anal. Chem. 101, 56–65 (2018)

    Article  CAS  Google Scholar 

  4. ISO10993–17:2002, Biological evaluation of medical devices - Part 17: Establishment of allowable limits for leachable substances.

  5. Jenke, D.: Evaluation of the chemical compatibility of plastic contact materials and pharmaceutical products; safety considerations related to extractables and leachables. J. Pharm. Sci. 96, 2566–2581 (2007)

    Article  CAS  Google Scholar 

  6. Hahladakis, J., Velis, C., Weber, R., Lacovidou, E., Purnell, P.: An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018)

    Article  CAS  Google Scholar 

  7. Marturano, V., Cerruti, P., Ambrogi, V.: Polymer additives. Phys. Sci. Rev. 2, 1–20 (2017)

    Article  Google Scholar 

  8. Jenke, D.: Compatibility of Pharmaceutical Products and Contact Materials: Safety Considerations Associated With Extractables and Leachables, p. 349. Wiley, Hoboken (2009)

    Book  Google Scholar 

  9. Wiesinger, H., Wang, Z., Hellweg, S.: Deep dive into plastic monomers, additives, and processing aids. Environ. Sci. Technol. 55, 9339–9351 (2021)

    Article  CAS  Google Scholar 

  10. Grob, K.: Work plans to get out of the deadlock for the safety assurance of migration from food contact materials? A proposal. Food Control. 46, 312–318 (2014)

    Article  Google Scholar 

  11. Polymer additives standard guide. https://www.accustandard.com/media/assets/Plastic_Add_Guide2018.pdf. Accessed 14 April 2022

  12. Virtual Computational Chemistry Laboratory, ALOGPS 2.1 program. http://www.vcclab.org/lab/alogps/. Accessed 14 Apr 2022

  13. Riquet, A., Scholler, D., Feigenbaum, A.: Tailoring fatty food simulants made from solvent mixtures (1): comparison of methanol, ethanol and isopropanol behaviour with polystyrene. Food Addit. Contam. 18, 65–176 (2001)

    Article  Google Scholar 

  14. Ahmad, I., Sabah, A., Anwar, Z., Arif, A., Arsalan, A., Qadeer, K.: Effect of solvent polarity on the extraction of components of pharmaceutical plastic containers. Pak. J. Pharm. Sci. 30, 247–252 (2017)

    CAS  PubMed  Google Scholar 

  15. Li. J.: Medical Device and Combination Product Specialty Section (Society of Toxicology) Presentation (Sept 2020), A Systematic Testing Strategy in Performing a Successful Chemical Characterization at Medtronic—How Industry May be Performing Chemical Characterization Differently than FDA Preferences and Why. https://www.toxicology.org/groups/ss/MDCPSS/pastevents.asp. Accessed 14 Apr 2022

  16. Turner, P., Elder, R.M., Nahan, K., Talley, A., Shah, S., Duncan, T.V., Sussman, E.M., Saylor, D.M.: leveraging extraction testing to predict patient exposure to polymeric medical device leachables using physics-based models. Toxicol. Sci 178, 201–211 (2020)

    Article  CAS  Google Scholar 

  17. Siepmann, F., Karrout, Y., Gehrke, M., Penz, F.K., Siepmann, J.: Limited drug solubility can be decisive even for freely soluble drugs in highly swollen matrix tablets. Int. J. Pharm. 526, 280–290 (2017)

    Article  CAS  Google Scholar 

  18. Chiens, Y.W., Lambert, H.J., Lin, T.K.: Solution-solubility dependency of controlled release of drug from polymer matrix: mathematical analysis. J. Pharm. Sci. 64, 1643–1647 (1975)

    Article  Google Scholar 

  19. Tahara, K., Yamamoto, K., Nishihata, T.: Application of model-independent and model analysis for the investigation of effect of drug solubility on its release rate from hydroxypropyl methylcellulose sustained release tablets. Int. J. Pharm 133, 17–27 (1996)

    Article  CAS  Google Scholar 

  20. Maitani, Y., Sato, H., Nagai, T.: Effect of ethanol on the true diffusion coefficient of diclofenac and its sodium salt in silicone membrane. Int. J. Pharm 113, 165–174 (1995)

    Article  CAS  Google Scholar 

  21. Jones, D.: Pharmaceutical Applications of Polymers for Drug Delivery, Rapra Technology Limited, (2004) Chapter 3, pp. 16–37

  22. Li, J.: Performing Extractables/Leachables Chemical Characterization on Implantable Medical Devices per ISO10093: Goals and Fundamental Challenges for Analytical Chemists, Pittcon2019 Oral Presentation, March 2019, Philadelphia, USA

  23. Keunchkarian, S., Reta, M., Romero, L., Castells, C.: Effect of sample solvent on the chromatographic peak shape of analytes eluted under reversed-phase liquid chromatographic conditions. J. Chromatogr. A 1119, 20–28 (2006)

    Article  CAS  Google Scholar 

  24. VanMiddlesworth, B., Dorsey, J.: Quantifying injection solvent effects in reversed-phase liquid chromatography. J. Chromatogr. A 1236, 77–89 (2012)

    Article  CAS  Google Scholar 

  25. Kolodziejski, M., Knapp, K., Wagner, D., Feister, J., Jacques, M., Ducker, C., Woods, M., Blakinger, A., Lehman, T.: Solubility for Common Extractable Compounds (Eurofins Laboratory), https://cdnmedia.eurofins.com/eurofins-us/media/1709957/solubility-for-common-extractable-compounds_elusa2019.pdf. Accessed 14 April 2022

  26. Guimarães, M., Kuentz, M., Vertzoni, M., Fotaki, N.: Evaluating pediatric and adult simulated fluids solubility: Abraham solvation parameters and multivariate analysis. Pharm Res 38, 1889–1896 (2021)

    Article  Google Scholar 

  27. Niederquell, A., Kuentz, M.: Biorelevant drug solubility enhancement modeled by a linear solvation energy relationship. J. Pharm. Sci. 107, 503–506 (2018)

    Article  CAS  Google Scholar 

  28. Egert, T., Langowski, H.C.: Evaluation of two cosolvency models to predict solute partitioning between polymers (ldpe) and water - ethanol simulating solvent mixtures. Pharm Res. (2022). https://doi.org/10.1007/s11095-022-03210-4

    Article  PubMed  Google Scholar 

  29. Abraham, M.H., Smith, R., Luchtefeld, R., Boorem, A., Luo, R., Acree, W.E., Jr.: Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99, 1500–1515 (2010)

    Article  CAS  Google Scholar 

  30. Abraham, M.H., Acree, W.E., Jr.: Descriptors for the prediction of partition coefficients and solubilities of organophosphorus compounds. Sep. Sci. Technol. 48, 884–897 (2013)

    Article  CAS  Google Scholar 

  31. Charltona, A.K., Danielsa, C.R., Wolda, R.M., Pustejovskya, E., Acree, W.E., Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 3-nitrobenzoic acid solubilities with the Abraham general solvation model. J. Mol. Liq. 116, 19–28 (2005)

    Article  Google Scholar 

  32. Acree, W.E., Jr., Horton, M.Y., Higgins, E., Abraham, M.H.: Abraham model linear free energy relationships as a means of extending solubility studies to include the estimation of solute solubilities in additional organic solvents. J. Chem. Thermodyn. 102, 392–397 (2016)

    Article  CAS  Google Scholar 

  33. Smart, K., Connolly, E., Ocon, L., Golden, T., Acree, W.E., Abraham, M.H.: Abraham model correlations for describing the partition of organic compounds from water into the methyl ethyl ketone extraction solvent. Phys. Chem. Liquids 60(1), 47–58 (2022)

    Article  CAS  Google Scholar 

  34. Liu, X., Abraham, M.H., Acree, W.H., Jr.: Abraham model descriptors for melatonin; prediction of solution, biological and thermodynamic properties. J. Solution Chem. (2022). https://doi.org/10.1007/s10953-021-01119-x

    Article  Google Scholar 

  35. Liang, Y., Xiong, R., Sandler, S., Toro, D.: Quantum chemically estimated Abraham solute parameters using multiple solvent-water partition coefficients and molecular polarizability. Environ. Sci. Technol. 51(17), 9887–9898 (2017)

    Article  CAS  Google Scholar 

  36. Karunasekara, T., Atapattu, S.N., Poole, C.F.: Determination of descriptors for plasticizers by chromatography and liquid–liquid partition. Chromatographia 75, 1135–1146 (2012)

    Article  CAS  Google Scholar 

  37. Atapattu, S.N., Poole, C.F.: Determination of descriptors for semivolatile organosilicon compounds. J. Chromatogr. A 1216, 7882–7888 (2009)

    Article  CAS  Google Scholar 

  38. Abraham, M.H., Gola, J.R.M., Gil-Lostes, J., Acree, W.E., Jr., Cometto-Muniz, E.: Determination of solvation descriptors for terpene hydrocarbons. J. Chromatogr. A 1293, 133–141 (2013)

    Article  CAS  Google Scholar 

  39. Poole, C.F.: Partition constant database for totally organic biphasic systems Colin F. J. Chromatogr. A 1527, 18–32 (2017)

    Article  CAS  Google Scholar 

  40. Snyder, L.R., Kirkland, J.J.: Introduction to Modern Liquid Chromatography, 2nd edn., p. 286. Wiley, New York (1979)

    Google Scholar 

  41. Li, A.: Predicting cosolvency for pharmaceutical and environmental applications. In: Wypych, G. (ed.) Handbook of Solvents, pp. 997–1016. Chem Tec Publishing, New York (2001)

    Google Scholar 

  42. Li, A., Yalkowsky, S.H.: Predicting cosolvency. 1. Solubility ratio and solute log Kow. Ind. Eng. Chem. Res. 37, 4470–4475 (1998)

    Article  CAS  Google Scholar 

  43. Reichardt, C.: Solvatochromic. Chem. Rev. Chem 94, 2319–2358 (1994)

    Article  CAS  Google Scholar 

  44. Hart, E., Grover, D., Zettl, H., Koshevarova, V., Zhang, S., Dai, D., Acree, W.E., Sedov, I.A., Stolov, M.A., Abraham, M.H.: Abraham model correlations for solute transfer into 2-methoxyethanol from water and from the gas phase. J. Mol. Liq. 209, 738–744 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N/A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Li.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 52 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J. Calculation of Relative Solubility of Semipolar Solvents by Abraham Solvation Parameter Model for Extractables and Leachables Analysis in Chemical Characterization of Medical Devices. J Solution Chem 51, 816–837 (2022). https://doi.org/10.1007/s10953-022-01173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01173-z

Keywords

Navigation