Skip to main content
Log in

A Method to Calculate Correlation Functions for β=1 Random Matrices of Odd Size

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The calculation of correlation functions for β=1 random matrix ensembles, which can be carried out using Pfaffians, has the peculiar feature of requiring a separate calculation depending on the parity of the matrix size N. This same complication is present in the calculation of the correlations for the Ginibre Orthogonal Ensemble of real Gaussian matrices. In fact the methods used to compute the β=1, N odd, correlations break down in the case of N odd real Ginibre matrices, necessitating a new approach to both problems. The new approach taken in this work is to deduce the β=1, N odd correlations as limiting cases of their N even counterparts, when one of the particles is removed towards infinity. This method is shown to yield the correlations for N odd real Gaussian matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M., Forrester, P.J., Nagao, T., van Moerbeke, P.: Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99(1/2), 141 (2000)

    Article  MATH  Google Scholar 

  2. Akemann, G., Kanzieper, E.: Integrable structure of Ginibre’s ensemble of real random matrices and a Pfaffian integration theorem. J. Stat. Phys. 129, 1159–1231 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Borodin, A., Sinclair, C.D.: Correlation functions of ensembles of asymmetric real matrices (2007). arXiv:0706.2670 [math-ph]

  4. Borodin, A., Sinclair, C.D.: The Ginibre ensemble of real random matrices and its scaling limits (2008). arXiv:0805.2986 [math-ph]

  5. De Bruijn, N.G.: On some multiple integrals involving determinants. J. Indian Math. Soc. 19, 133–151 (1955)

    MATH  MathSciNet  Google Scholar 

  6. Dyson, F.J.: Statistical theory of the energy levels of complex systems I. J. Math. Phys. 3(1), 140–156 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dyson, F.J.: Correlations between eigenvalues of a random matrix. Commun. Math. Phys. 19, 235–250 (1970)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Edelman, A.: The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivar. Anal. 60, 203–232 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Edelman, A., Kostlan, E., Shub, M.: How many eigenvalues of a random matrix are real? J. Am. Math. Soc. 7(1), 247–267 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Forrester, P.J.: Log gases and random matrices. Currently available at: http://www.ms.unimelb.edu.au/~matpjf/matpjf.html (forthcoming)

  11. Forrester, P.J., Nagao, T.: Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett. 99, 050603 (2007)

    Article  ADS  Google Scholar 

  12. Forrester, P.J., Nagao, T.: Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble. J. Phys. A 41, 375003 (2008)

    Article  MathSciNet  Google Scholar 

  13. Frahm, K., Pichard, J.-L.: Magnetoconductance of ballistic chaotic quantum dots: A Brownian motion approach for the S-matrix. J. Phys. I. 5, 874 (1995)

    Google Scholar 

  14. Ginibre, J.: Statistical ensembles of complex, quaternion and real matrices. J. Math. Phys. 6(3), 440 (1965)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Kanzieper, E.: Eigenvalue correlations in Ginibre’s non-Hermitean random matrices at β=4. J. Phys. A 35, 6631–6644 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Lane, A.M., Thomas, R.G., Wigner, E.P.: Giant resonance interpretation of the nucleon–nucleus interaction. Phys. Rev. 98(3), 639–701 (1955)

    Article  Google Scholar 

  17. Lehmann, N., Sommers, H.-J.: Eigenvalue statistics of random real matrices. Phys. Rev. Lett. 67(8), 941–944 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Mahoux, G., Mehta, M.L.: A method of integration over matrix variables: IV. J. Phys. I. 1, 1093–1108 (1991)

    Article  MathSciNet  Google Scholar 

  19. Mehta, M.L.: On the statistical properties of the level-spacings in nuclear spectra. Nucl. Phys. 18, 395–419 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mehta, M.L.: A note on correlations between eigenvalues of a random matrix. Commun. Math. Phys. 20, 245–250 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Mehta, M.L.: A note on certain multiple integrals. J. Math. Phys. 17(12), 2198–2202 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Mehta, M.L.: Random Matrices. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  23. Mehta, M.L., Dyson, F.J.: Statistical theory of the energy levels of complex systems V. J. Math. Phys. 4(5), 713–719 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Shukla, P.: Non-Hermitian random matrices and the Calogero-Sutherland model. Phys. Rev. Lett. 87(19), 194102 (2001)

    Article  ADS  Google Scholar 

  25. Sinclair, C.D.: Averages over Ginibre’s ensemble of random real matrices. Int. Math. Res. Not. 2007, 1–15 (2007), rnm015

    Google Scholar 

  26. Sinclair, C.D.: Correlation functions for β=1 ensembles of matrices of odd size (2008). arXiv:0811.1276 [math-ph]

  27. Sommers, H.-J.: Symplectic structure of the real Ginibre ensemble. J. Phys. A 40, F671 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Sommers, H.-J., Wieczorek, W.: General eigenvalue correlations for the real Ginibre ensemble. J. Phys. A 41, 405003 (2008)

    Article  Google Scholar 

  29. Tracy, C.A., Widom, H.: Correlation functions, cluster functions and spacing distributions for random matrices. J. Stat. Phys. 92(5/6), 809–835 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62(3), 548–564 (1955)

    Article  MathSciNet  Google Scholar 

  31. Wigner, E.P.: Statistical properties of real symmetric matrices with many dimensions. In: Canadian Mathematical Congress Proceedings. University of Toronto Press, Toronto (1957)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Mays.

Additional information

The work of P.J.F. was supported by the Australian Research Council, and A.M. was supported by an Australian Postgraduate Award.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrester, P.J., Mays, A. A Method to Calculate Correlation Functions for β=1 Random Matrices of Odd Size. J Stat Phys 134, 443–462 (2009). https://doi.org/10.1007/s10955-009-9684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9684-6

Keywords

Navigation