Skip to main content
Log in

Efficient Implementation of the Pivot Algorithm for Self-avoiding Walks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The pivot algorithm for self-avoiding walks has been implemented in a manner which is dramatically faster than previous implementations, enabling extremely long walks to be efficiently simulated. We explicitly describe the data structures and algorithms used, and provide a heuristic argument that the mean time per attempted pivot for N-step self-avoiding walks is O(1) for the square and simple cubic lattices. Numerical experiments conducted for self-avoiding walks with up to 268 million steps are consistent with o(log N) behavior for the square lattice and O(log N) behavior for the simple cubic lattice. Our method can be adapted to other models of polymers with short-range interactions, on the lattice or in the continuum, and hence promises to be widely useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrowicz, Z.: Monte Carlo of chains with excluded volume: a way to evade sample attrition. J. Chem. Phys. 51, 561–565 (1969)

    Article  ADS  Google Scholar 

  2. Baiesi, M., Orlandini, E., Stella, A.L.: Peculiar scaling of self-avoiding walk contacts. Phys. Rev. Lett. 87, 070602 (2001)

    Article  ADS  Google Scholar 

  3. Caracciolo, S., Guttmann, A.J., Jensen, I., Pelissetto, A., Rogers, A.N., Sokal, A.D.: Correction-to-scaling exponents for two-dimensional self-avoiding walks. J. Stat. Phys. 120, 1037–1100 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Clisby, N.: Accurate estimate of the critical exponent ν for self-avoiding walks via a fast implementation of the pivot algorithm. Phys. Rev. Lett. 104, 055702 (2010)

    Article  ADS  Google Scholar 

  5. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache oblivious algorithms. In: Proceedings 40th Annual Symposium on Foundations of Computer Science, pp. 285–297 (1999)

  6. Gabay, M., Garel, T.: Renormalization along the chemical sequence of a single polymer chain. J. Phys. Lett. 39, 123–125 (1978)

    Article  Google Scholar 

  7. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Yormark, B. (ed.) SIGMOD ’84, pp. 47–57. ACM, New York (1984)

    Chapter  Google Scholar 

  8. Hara, T., Slade, G.: Self-avoiding walk in five or more dimensions I. The critical behaviour. Commun. Math. Phys. 147, 101–136 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Kennedy, T.: A faster implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys. 106, 407–429 (2002)

    Article  MATH  Google Scholar 

  10. Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-dops. IEEE T. Vis. Comput. Gr. 4, 21–36 (1998)

    Article  Google Scholar 

  11. Kremer, K., Baumgärtner, A., Binder, K.: Monte Carlo renormalization of hard sphere polymer chains in two to five dimensions. Z. Phys. B, Condens. Matt. 40, 331–341 (1981)

    Article  ADS  Google Scholar 

  12. Kumar, P.: Cache Oblivious Algorithms, pp. 193–212. Springer, Berlin (2003). Chap. 9

    Google Scholar 

  13. Lal, M.: ‘Monte Carlo’ computer simulation of chain molecules. I. Mol. Phys. 17, 57–64 (1969)

    Article  ADS  Google Scholar 

  14. Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal Geometry and Applications: a Jubilee of Benoit Mandelbrot, Part 2. Proc. Sympos. Pure Math., vol. 72, pp. 339–364. Am. Math. Soc., Providence (2004)

    Google Scholar 

  15. Li, B., Madras, N., Sokal, A.D.: Critical exponents, hyperscaling, and universal amplitude ratios for two- and three-dimensional self-avoiding walks. J. Stat. Phys. 80, 661–754 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhaüser, Boston (1993)

    MATH  Google Scholar 

  17. Madras, N., Sokal, A.D.: The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk. J. Stat. Phys. 50, 109–186 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Müller, S., Schäfer, L.: On the number of intersections of self-repelling polymer chains. Eur. Phys. J. B 2, 351–369 (1998)

    Article  Google Scholar 

  19. Nienhuis, B.: Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett. 49, 1062–1065 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  20. Oono, Y.: Renormalization along the polymer chain. J. Phys. Soc. Jpn. 47, 683–684 (1979)

    Article  ADS  Google Scholar 

  21. Sedgewick, R.: Algorithms in C, Parts 1–4, 3rd edn. Addison-Wesley, Reading (1998)

    Google Scholar 

  22. Sokal, A.D.: Monte Carlo methods for the self-avoiding walk. arXiv:hep-lat/9405016 (1994)

  23. Sokal, A.D.: Monte Carlo methods for the self-avoiding walk. Nucl. Phys. B (Proc. Suppl.) 47, 172–179 (1996)

    Article  ADS  Google Scholar 

  24. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In: Proceedings 16th Annual Symposium on Foundations of Computer Science, pp. 75–84 (1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Clisby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clisby, N. Efficient Implementation of the Pivot Algorithm for Self-avoiding Walks. J Stat Phys 140, 349–392 (2010). https://doi.org/10.1007/s10955-010-9994-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9994-8

Keywords

Navigation