Skip to main content
Log in

Expanded Vandermonde Powers and Sum Rules for the Two-Dimensional One-Component Plasma

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The two-dimensional one-component plasma (2dOCP) is a system of N mobile particles of the same charge q on a surface with a neutralizing background. The Boltzmann factor of the 2dOCP at temperature T can be expressed as a Vandermonde determinant to the power Γ=q 2/(k B T). Recent advances in the theory of symmetric and anti-symmetric Jack polynomials provide an efficient way to expand this power of the Vandermonde in their monomial basis, allowing the computation of several thermodynamic and structural properties of the 2dOCP for N values up to 14 and Γ equal to 4, 6 and 8. In this work we explore two applications of this formalism, to the study of the pair correlation function of the 2dOCP on the sphere, and the distribution of radial statistics of the 2dOCP in the plane. Also provided is a finite N approximation to the pair correlation on the sphere, and a sum rule for the constant term in the large N expansion of the moments of the density in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alastuey, A.: Contribution of the three particle and higher order correlations to the computation of interface density profiles by density functional theories, for two dimensional plasmas. Mol. Phys. 52, 637–675 (1984)

    Article  ADS  Google Scholar 

  2. Baker, T.H., Forrester, P.J.: The Calogero-Sutherland model and polynomials with prescribed symmetry. Nucl. Phys. B 492, 682–716 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Baratta, W., Forrester, P.J.: Jack polynomial fractional quantum Hall states and their generalizations. Nucl. Phys. B 843, 362–381 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bernevig, B.A., Haldane, F.D.M.: Model fractional quantum Hall states and Jack polynomials. Phys. Rev. Lett. 100, 246802 (2008)

    Article  ADS  Google Scholar 

  5. Bernevig, B.A., Regnault, N.: The anatomy of Abelian and non-Abelian fractional quantum Hall states. Phys. Rev. Lett. 103, 206801 (2009)

    Article  ADS  Google Scholar 

  6. Caillol, J.M.: Exact results for a two-dimensional one-component plasma on a sphere. J. Phys. Lett. (Paris) 42, L245–L247 (1981)

    Article  Google Scholar 

  7. Caillol, J.M., Levesque, D., Weiss, J.J., Hansen, J.P.: A Monte Carlo study of the classical two-dimensional one-component plasma. J. Stat. Phys. 28, 325 (1982)

    Article  ADS  Google Scholar 

  8. Choquard, Ph., Favre, P., Gruber, Ch.: On the equation of state of classical one-component systems with long-range forces. J. Stat. Phys. 23, 405–442 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  9. Dragnev, P.D., Legg, D.A., Townsend, D.W.: Discrete logarithmic energy on the sphere. Pac. J. Math. 207, 345–358 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Forrester, P.J.: Fluctuation formula for complex random matrices. J. Phys. A 32, L159–L163 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Forrester, P.J.: Log-gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  12. Forrester, P.J., Jancovici, B., McAnally, D.S.: Analytic properties of the structure function for the one-dimensional one-component log-gas. J. Stat. Phys. 102, 737–780 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  13. Haldane, F.D.M., Rezayi, E.H.: Periodic Laughlin-Jastrow wave functions for the fractional quantized Hall effect. Phys. Rev. B 31, 2529–2531 (1985)

    Article  ADS  Google Scholar 

  14. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  15. Jancovici, B.: Exact results for the two-dimensional one-component plasma. Phys. Rev. Lett. 46, 386 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  16. Jancovici, B.: Surface properties of a classical two-dimensional one-component plasma: exact results. J. Stat. Phys. 34, 803–815 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  17. Jancovici, B., Šamaj, L.: Guest charge and potential fluctuations in two-dimensional classical Coulomb systems. J. Stat. Phys. 131, 613–629 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Jancovici, B., Manificat, G., Pisani, C.: Coulomb systems seen as critical systems: finite-size effects in two dimensions. J. Stat. Phys. 76, 307–330 (1994)

    Article  ADS  MATH  Google Scholar 

  19. Kalinay, P., Markoš, P., Šamaj, L., Travěnec, I.: The sixth-moment sum rule for the pair correlations of the two-dimensional one-component plasma: exact results. J. Stat. Phys. 98, 639–666 (2000)

    Article  MATH  Google Scholar 

  20. Kuramoto, Y., Kato, Y.: Dynamics of One-Dimensional Quantum Systems. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  21. Laughlin, R.B.: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charge excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)

    Article  ADS  Google Scholar 

  22. Macdonald, I.G.: Hall Polynomials and Symmetric Functions, 2nd edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  23. Martin, Ph.A.: Sum rules in charged fluids. Rev. Mod. Phys. 60, 1075–1127 (1988)

    Article  ADS  Google Scholar 

  24. Read, N., Rezayi, E.: Beyond paired fractional quantum Hall states: parafermions and incompressible states in the first excited Landau level. Phys. Rev. B 59, 8084 (1999)

    Article  ADS  Google Scholar 

  25. Téllez, G.: Debye-Hückel theory for two-dimensional Coulomb systems living on a finite surface without boundaries. Physica A 349, 155 (2005)

    Article  ADS  Google Scholar 

  26. Téllez, G., Forrester, P.J.: Finite size study of the 2dOCP at Γ=4 and Γ=6. J. Stat. Phys. 97, 489–521 (1999)

    Article  ADS  MATH  Google Scholar 

  27. Thomale, R., Estienne, B., Regnault, N., Bernevig, B.A.: Decomposition of fractional quantum Hall model states: product rule symmetries and approximations. Phys. Rev. B 84, 045127 (2011)

    Article  ADS  Google Scholar 

  28. Šamaj, L.: Is the two-dimensional one-component plasma exactly solvable? J. Stat. Phys. 117, 131–158 (2004)

    Article  ADS  MATH  Google Scholar 

  29. Šamaj, L.: A generalization of the Stillinger-Lovett sum rules for the two-dimensional jellium. J. Stat. Phys. 128, 1415–1428 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Šamaj, L., Percus, J.: A functional relation among the pair correlations of the two-dimensional one-component plasma. J. Stat. Phys. 80, 811–824 (1995)

    Article  ADS  MATH  Google Scholar 

  31. Scharf, T., Thibon, J.-Y., Wybourne, B.G.: Powers of the Vandermonde determinant and the quantum Hall effect. J. Phys. A 27, 4211–4219 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank N. Regnault for providing us with the code to compute numerically the coefficients \(\{c_{\mu}^{(N)}\}\) based on (2.16) and (2.17). Comments from the referees helped improve our presentation.

G.T. acknowledges partial financial support from Facultad de Ciencias de la Universidad de los Andes, and ECOS Nord/COLCIENCIAS-MEN-ICETEX. P.J.F. was supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Téllez.

Appendix

Appendix

In this appendix we present some properties of the functions

$$ {\mathcal{I}}(k_1,k_2)= \int\!\!\!\int_{0\leq t_2 < t_1} e^{-t_1-t_2} t_1^{k_1} t_2^{k_2} \,dt_1\,dt_2 , $$
(A.1)

and

$$ {\mathcal{J}}(k_1,k_2)=\int_{0}^{\infty} \int_{0}^{\infty} e^{-t_1-t_2} t_1^{k_1} t_2^{k_2} \log\bigl( \max(t_1 ,t_2)\bigr) \,dt_1\,dt_2 , $$
(A.2)

that appear in the expansion of the density around Γ=2. First, it should be noticed that

$$ {\mathcal{I}}(k_1,k_2)+ { \mathcal{I}}(k_2,k_1)= k_1! k_2! . $$
(A.3)

Doing an integration by parts, one obtains the recurrence relation

$$ {\mathcal{I}}(k_1+1,k_2)-(k_1+1){\mathcal {I}}(k_1,k_2)=2^{-k_1-k_2-2}(k_1+k_2+1)! , $$
(A.4)

and reiterating

(A.5)

Similarly, for \({\mathcal{J}}\) we have

$$ {\mathcal{J}}(k_1+n,k_2)- \frac{(k_1+n)!}{k_1!}\,{\mathcal{J}}(k_1,k_2)= \sum _{\ell=0}^{n-1} {\mathcal{I}}(k_1+ \ell,k_2)\frac {(k_1+n)!}{(k_1+\ell+1)!} . $$
(A.6)

From (A.5), one can obtain an alternative expression for \({\mathcal{I}}\) as a sum

$$ {\mathcal{I}}(k_1,k_2)=\sum _{\ell=0}^{k_1} 2^{-k_2-\ell-1} \frac {(k_2+\ell )!k_1!}{\ell!}. $$
(A.7)

The asymptotic expansion of \({\mathcal{I}}(k_{1},k_{2})\) for large arguments, k 1 and k 2 of order N→∞, can be obtained by the steepest descent method. The maximum of the integrand in (A.1) is for t 1=k 1 and t 2=k 2. Therefore, the behavior of \({\mathcal {I}}(k_{1},k_{2})\) will depend on whether this maximum is in the domain of integration 0≤t 2<t 1 or not, i.e., if k 2<k 1 or not. If 1≪k 2<k 1, and \(|k_{1}-k_{2}|/\sqrt{N}\gg1\), then the maximum of the integrand in (A.1) is deep inside the domain of integration, and a simple application of the steepest descent shows that \({\mathcal {I}}(k_{1},k_{2})\sim k_{1}! k_{2}!\). However for the calculations of Sect. 5.3, the behavior of \({\mathcal{I}}(k_{1},k_{2})\) when k 2>k 1 is needed. In this situation, the maximum of the integrand is outside the domain of integration. Nevertheless, \({\mathcal{I}}(k_{1},k_{2})\) will give a significant contribution when the maximum of the integrand is “close” to the border, more precisely when |k 2k 1| is of order \(O(\sqrt{N}\,)\). The dominant contribution to the integral (A.1) will be given by the region consisting of a strip attached and parallel to the line t 1=t 2 of width of order \(\sqrt{N}\). To be more specific, let us do the change of integration variables v +=t 1+t 2 and v =t 1t 2 in (A.1) and write

$$ {\mathcal{I}}(k_1,k_2)=\int\!\!\!\int_{\mathcal{D}} dv_{+}dv_{-} e^{-g(v_+,v_{-})} \frac {dv_{+}dv_{-}}{2^{k_1+k_2+1}} , $$
(A.8)

with

$$ g(v_{+},v_{-})=v_{+}-k_1 \log(v_{+}+v_{-})-k_2\log(v_{+}-v_{-}) , $$
(A.9)

where \(\mathcal{D}=\{(t_{1},t_{2}), 0\leq t_{2} < t_{1}\}\). g has its maximum for \(v_{+}=v_{+}^{*}=k_{1}+k_{2}\) and \(v_{-}=v_{-}^{*}=k_{1}-k_{2}\) (i.e. t 1=k 1 and t 2=k 2). Expanding g to the second order around its maximum we obtain

(A.10)

Although the domain of integration \(\mathcal{D}\) cannot be simply expressed in terms of the variables v + and v , due to fast Gaussian decay of the integrand in (A.10), the dominant contribution is indeed obtained by the strip along the line t 1=t 2 mentioned above. With this in mind, it is clear that one can extend the domain of integration for v + to ]−∞,+∞[ and for v to [0,+∞[, up to exponentially small corrections. Then, performing first the integral over v +, we obtain

$$ {\mathcal{I}}(k_1,k_2)\sim e^{-k_1-k_2} k_1^{k_1} k_2^{k_2} \sqrt { \frac{2\pi k_1k_2}{k_1+k_2}} \int_{0}^{+\infty} e^{-\frac{(v_{-}-v_{-}^{*})^2}{2(k_1+k_2)}} \,dv_{-}. $$
(A.11)

Performing now the integral over v gives

$$ {\mathcal{I}}(k_1,k_2) \sim e^{-k_1-k_2} k_1^{k_1} k_2^{k_2} \pi\sqrt {k_1k_2}\, {\mathrm{erfc}} \biggl( \frac{k_2-k_1}{\sqrt{2(k_1+k_2)}} \biggr) , $$
(A.12)

where \({\mathrm{erfc}}(x)=1-(2/\sqrt{\pi}\,)\int_{0}^{x} e^{-t^{2}}\, dt\), is the complementary error function. Recalling Stirling’s formula for the factorial, (A.12) can be written as

$$ \frac{{\mathcal{I}}(k_1,k_2)}{ k_1! k_2! } \sim \frac{1}{2}\,{\mathrm{erfc}} \biggl(\frac{k_2-k_1}{\sqrt {2(k_1+k_2)}} \biggr) . $$
(A.13)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Téllez, G., Forrester, P.J. Expanded Vandermonde Powers and Sum Rules for the Two-Dimensional One-Component Plasma. J Stat Phys 148, 824–855 (2012). https://doi.org/10.1007/s10955-012-0551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0551-5

Keywords

Navigation