Skip to main content
Log in

Finite-Size Left-Passage Probability in Percolation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We obtain an exact finite-size expression for the probability that a percolation hull will touch the boundary, on a strip of finite width. In terms of clusters, this corresponds to the one-arm probability. Our calculation is based on the q-deformed Knizhnik–Zamolodchikov approach, and the results are expressed in terms of symplectic characters. In the large size limit, we recover the scaling behaviour predicted by Schramm’s left-passage formula. We also derive a general relation between the left-passage probability in the Fortuin–Kasteleyn cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex boundary terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The term ‘boundary edge’ is used throughout this paper to mean the edge closest to the left boundary along the given row.

  2. Note that this proof is only valid for odd L; for even L the statement must also be proved for L=2. We omit this part of the proof as we are only interested in odd system sizes.

  3. The definition of the transfer matrix implies that the components of the eigenvector, and thus the passage probabilities, are only functions of \(z_{i}^{2}\) and do not depend on any odd powers of z i . This fact is crucial to these proofs.

  4. We could also define \(\widehat{Y}_{j}\) in a similar fashion, but this is simply related to Y j by the transformation z k →1/z k , ∀k.

References

  1. Bauer, M., Bernard, D.: SLE martingales and the Virasoro algebra. Phys. Lett. B 557(3–4), 309–316 (2003). doi:10.1016/S0370-2693(03)00189-8

    MathSciNet  ADS  MATH  Google Scholar 

  2. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics, 2nd edn. Dover, New York (2007). Reprint of the 1982 original, Academic Press, London

    MATH  Google Scholar 

  3. Cantini, L., Sportiello, A.: Proof of the Razumov–Stroganov conjecture. J. Comb. Theory, Ser. A 118(5), 1549–1574 (2011). doi:10.1016/j.jcta.2011.01.007. arXiv:1003.3376v1

    Article  MathSciNet  MATH  Google Scholar 

  4. Cardy, J.: Critical percolation in finite geometries. J. Phys. A 25(4), L201 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Cardy, J.: Network models in class C on arbitrary graphs. Commun. Math. Phys. 258, 87–102 (2005). doi:10.1007/s00220-005-1304-y

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012). arXiv:0910.2045

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Di Francesco, P.: Inhomogeneous loop models with open boundaries. J. Phys. A 38(27), 6091–6120 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Di Francesco, P.: Open boundary quantum Knizhnik–Zamolodchikov equation and the weighted enumeration of plane partitions with symmetries. J. Stat. Mech. 2007, P01024 (2007). doi:10.1088/1742-5468/2007/01/P01024. arXiv:math-ph/0611012v2

    Article  Google Scholar 

  9. Di Francesco, P., Saleur, H., Zuber, J.B.: Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models. J. Stat. Phys. 49, 57–79 (1987). doi:10.1007/BF01009954

    Article  ADS  MATH  Google Scholar 

  10. Di Francesco, P., Zinn-Justin, P.: Around the Razumov–Stroganov conjecture: proof of a multi-parameter sum rule. Electron. J. Comb. 12 (2005)

  11. Di Francesco, P., Zinn-Justin, P.: Quantum Knizhnik–Zamolodchikov equation: reflecting boundary conditions and combinatorics. J. Stat. Mech. 2007, P12009 (2007). doi:10.1088/1742-5468/2007/12/P12009

    Article  Google Scholar 

  12. de Gier, J.: Loops, matchings and alternating-sign matrices. Discrete Math. 298(1–3), 365–388 (2005). arXiv:math.CO/0211285v2

    Article  MathSciNet  MATH  Google Scholar 

  13. de Gier, J., Nienhuis, B., Ponsaing, A.K.: Exact spin quantum Hall current between boundaries of a lattice strip. Nucl. Phys. B 838(3), 371–390 (2010). doi:10.1016/j.nuclphysb.2010.05.019. arXiv:1004.4037

    Article  ADS  MATH  Google Scholar 

  14. de Gier, J., Ponsaing, A.K.: Separation of variables for symplectic characters. Lett. Math. Phys. 97, 61–83 (2011). doi:10.1007/s11005-011-0467-z. arXiv:1009.2831v1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. de Gier, J., Ponsaing, A.K., Shigechi, K.: The exact finite size ground state of the O (n=1) loop model with open boundaries. J. Stat. Mech. 2009(04), P04010 (2009). arXiv:0901.2961

    Article  Google Scholar 

  16. de Gier, J., Pyatov, P.: Factorised solutions of Temperley–Lieb qKZ equations on a segment. Adv. Theor. Math. Phys. 14, 795–877 (2010). arXiv:0710.5362 [math-ph]

    MathSciNet  MATH  Google Scholar 

  17. Ikhlef, Y., Cardy, J.: Discretely holomorphic parafermions and integrable loop models. J. Phys. A 42, 10 (2009)

    MathSciNet  Google Scholar 

  18. Kitanine, N., Kozlowski, K.K., Maillet, J.M., Niccoli, G., Slavnov, N.A., Terras, V.: Correlation functions of the open XXZ chain: I. J. Stat. Mech. 2007(10), P10009 (2007)

    Article  MathSciNet  Google Scholar 

  19. Kitanine, N., Kozlowski, K.K., Maillet, J.M., Niccoli, G., Slavnov, N.A., Terras, V.: Correlation functions of the open XXZ chain: II. J. Stat. Mech. 2008(07), P07010 (2008)

    Article  MathSciNet  Google Scholar 

  20. Nienhuis, B.: Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas. J. Stat. Phys. 34, 731–761 (1984). doi:10.1007/BF01009437

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Razumov, A.V., Stroganov, Y.G.: Combinatorial nature of the ground-state vector of the O(1) loop model. Theor. Math. Phys. 138(3), 333–337 (2004). doi:10.1023/B:TAMP.0000018450.36514.d7

    Article  MathSciNet  MATH  Google Scholar 

  22. Razumov, A.V., Stroganov, Y.G.: O(1) loop model with different boundary conditions and symmetry classes of alternating-sign matrices. Theor. Math. Phys. 142(2), 237–243 (2005). doi:10.1007/s11232-005-0007-z

    MathSciNet  MATH  Google Scholar 

  23. Riva, V., Cardy, J.: Holomorphic parafermions in the Potts model and stochastic Loewner evolution. J. Stat. Mech. 2006(12), P12001 (2006)

    Article  MathSciNet  Google Scholar 

  24. Saleur, H., Duplantier, B.: Exact determination of the percolation hull exponent in two dimensions. Phys. Rev. Lett. 58(22), 2325–2328 (1987). doi:10.1103/PhysRevLett.58.2325

    Article  MathSciNet  ADS  Google Scholar 

  25. Schramm, O.: A percolation formula. Electron. Commun. Probab. 6, 115–120 (2001). arXiv:math/0107096

    Article  MathSciNet  Google Scholar 

  26. Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21(10), 2375–2389 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Ser. I Math. 333(3), 239–244 (2001). doi:10.1016/S0764-4442(01)01991-7

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Smirnov, S.: Conformal invariance in random cluster models I. Holomorphic fermions in the Ising model. Ann. Math. 172(2), 1435–1467 (2010). doi:10.4007/annals.2010.172.1435. arXiv:0708.0039v1

    Article  MATH  Google Scholar 

  29. Werner, W.: Percolation et modèle d’Ising. Cours Spécialisés [Specialized Courses], vol. 16. Société Mathématique de France, Paris (2009)

    MATH  Google Scholar 

  30. Zinn-Justin, P.: Private Communication

  31. Zinn-Justin, P.: Loop model with mixed boundary conditions, qKZ equation and alternating sign matrices. J. Stat. Mech. 2007(1), P01007 (2007). doi:10.1088/1742-5468/2007/01/P01007. arXiv:math-ph/0610067

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank J. de Gier, C. Hagendorf, A. Mays, V. Terras, and P. Zinn-Justin for fruitful discussions. This work was supported by the European Research Council (grant CONFRA 228046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita K. Ponsaing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikhlef, Y., Ponsaing, A.K. Finite-Size Left-Passage Probability in Percolation. J Stat Phys 149, 10–36 (2012). https://doi.org/10.1007/s10955-012-0573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0573-z

Keywords

Navigation