Skip to main content
Log in

A Real Quaternion Spherical Ensemble of Random Matrices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

One can identify a tripartite classification of random matrix ensembles into geometrical universality classes corresponding to the plane, the sphere and the anti-sphere. The plane is identified with Ginibre-type (iid) matrices and the anti-sphere with truncations of unitary matrices. This paper focusses on an ensemble corresponding to the sphere: matrices of the form Y=A −1 B, where A and B are independent N×N matrices with iid standard Gaussian real quaternion entries. By applying techniques similar to those used for the analogous complex and real spherical ensembles, the eigenvalue joint probability density function and correlation functions are calculated. This completes the exploration of spherical matrices using the traditional Dyson indices β=1,2,4.

We find that the eigenvalue density (after stereographic projection onto the sphere) has a depletion of eigenvalues along a ring corresponding to the real axis, with reflective symmetry about this ring. However, in the limit of large matrix dimension, this eigenvalue density approaches that of the corresponding complex ensemble, a density which is uniform on the sphere. This result is in keeping with the spherical law (analogous to the circular law for iid matrices), which states that for matrices having the spherical structure Y=A −1 B, where A and B are independent, iid matrices the (stereographically projected) eigenvalue density tends to uniformity on the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Akemann, G.: The complex Laguerre symplectic ensemble of non-Hermitian matrices. Nucl. Phys. B 730(3), 253–299 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Armentano, D., Beltrán, C., Shub, M.: Minimizing the discrete logarithmic energy on the sphere: the role of random polynomials. Trans. Am. Math. Soc. 363(6), 2955–2965 (2011)

    Article  MATH  Google Scholar 

  3. Bai, Z.D.: Circular law. Ann. Probab. 25(1), 494–529 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bordenave, C.: On the spectrum of sum and products of non-Hermitian random matrices. Electron. Commun. Probab. 16, 104–113 (2011). Paper 10

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodin, A., Serfaty, S.: Renormalized energy concentration in random matrices. Commun. Math. Phys. 320(1), 199–244 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Borodin, A., Sinclair, C.D.: The Ginibre ensemble of real random matrices and its scaling limits. Commun. Math. Phys. 291, 177–224 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Dyson, F.J.: Statistical theory of the energy levels of complex systems I. J. Math. Phys. 3(1), 140–156 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Dyson, F.J.: Correlations between eigenvalues of a random matrix. Commun. Math. Phys. 19(3), 235–250 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Edelman, A., Kostlan, E., Shub, M.: How many eigenvalues of a random matrix are real? J. Am. Math. Soc. 7(1), 247–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feinberg, J.: On the universality of the probability distribution of the product B −1 X of random matrices. J. Phys. A 37, 6823 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Fischmann, J., Mays, A.: Induced real and real quaternion spherical ensembles (2013, in preparation)

  12. Forrester, P.J.: Quantum conductance problems and the Jacobi ensemble. J. Phys. A 39(22), 6861–6870 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  14. Forrester, P.J., Mays, A.: Pfaffian point process for the Gaussian real generalised eigenvalue problem. Probab. Theory Relat. Fields 154, 1–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ginibre, J.: Statistical ensembles of complex, quaternion and real matrices. J. Math. Phys. 6(3), 440–449 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Girko, V.L.: Circular law. Theory Probab. Appl. 29(4), 694–706 (1985) (trans. Durri-Hamdani)

    Article  Google Scholar 

  17. Götze, F., Tikhomirov, A.: The circular law for random matrices. Ann. Probab. 38(4), 1444–1491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, San Diego (2000). Corrected and enlarged edition

    MATH  Google Scholar 

  19. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. Am. Math. Soc., Providence (2009)

    MATH  Google Scholar 

  20. Kanzieper, E.: Eigenvalue correlations in non-Hermitean symplectic random matrices. J. Phys. A 35, 6631–6644 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Khoruzhenko, B.A., Sommers, H.-J., Życzkowski, K.: Truncations of random orthogonal matrices. Phys. Rev. E 82(4), 040106(R) (2010)

    Article  ADS  Google Scholar 

  22. Krishnapur, M.: Zeros of random analytic functions. Ph.D. thesis, U.C. Berkeley (2006). arXiv:math/0607504

  23. Krishnapur, M.: From random matrices to random analytic functions. Ann. Probab. 37(1), 314–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Le Caër, G., Ho, J.S.: The Voronoi tessellation generated from eigenvalues of complex random matrices. J. Phys. A 23, 3279–3295 (1990)

    Article  ADS  Google Scholar 

  25. Mathai, A.M.: Jacobians of Matrix Transformations and Functions of Matrix Arguments. World Scientific, Singapore (1997)

    Book  Google Scholar 

  26. Mays, A.: A geometrical triumvirate of real random matrices. Ph.D. thesis, The University of Melbourne (2011). http://repository.unimelb.edu.au/10187/11139

  27. Mehta, M.L.: Random Matrices. Academic Press, Boston (2004)

    MATH  Google Scholar 

  28. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, Hoboken (2005)

    Google Scholar 

  29. Nachbin, L.: The Haar Integral. Van Nostrand, Princeton (1965)

    MATH  Google Scholar 

  30. Olkin, I.: The 70th anniversary of the distribution of random matrices: a survey. Linear Algebra Appl. 354, 231–243 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Petz, D., Réffy, J.: On asymptotics of large Haar distributed unitary matrices. Period. Math. Hung. 49(1), 103–117 (2004)

    Article  MATH  Google Scholar 

  32. Rains, E.: Correlation functions for symmetrized increasing subsequences (2000). arXiv:math/0006097v1

  33. Rogers, T.: Universal sum and product rules for random matrices. J. Math. Phys. 51, 093304 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  34. Selberg, A.: Bemerkninger om et multipelt integral. Nor. Mat. Tidsskr. 26, 71–78 (1944)

    MathSciNet  MATH  Google Scholar 

  35. Tao, T., Vu, V.: Random matrices: universality of local spectral statistics of non-Hermitian matrices (2012). arXiv:1206.1893

  36. Tao, T., Vu, V., Krishnapur, M.: Random matrices: universality of ESDs and the circular law. Ann. Probab. 38(5), 2023–2065 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Życzkowski, K., Sommers, H.-J.: Truncations of random unitary matrices. J. Phys. A 33(10), 2045 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

AM was partly supported by the Australian Mathematical Society (AustMS) LiftOff Fellowship during the work leading to this paper. Special thanks to Peter Forrester for reading an early draft of this work and providing many useful comments. The author would also like to thank Gernot Akemann, Tilo Wettig and Anita Ponsaing for several interesting discussions, and the following for their kind hospitality: Department of Mathematics, Vanderbilt University; Department of Mathematics, University of Geneva; Faculty of Physics, University of Bielefeld; and Faculty of Physics, University of Regensburg. Thanks to Joshua Feinberg for pointing me to an earlier work of his which is relevant to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Mays.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mays, A. A Real Quaternion Spherical Ensemble of Random Matrices. J Stat Phys 153, 48–69 (2013). https://doi.org/10.1007/s10955-013-0808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0808-7

Keywords

Navigation