Skip to main content
Log in

Local Central Limit Theorem for Determinantal Point Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove a local central limit theorem (LCLT) for the number of points \(N(J)\) in a region \(J\) in \(\mathbb R^d\) specified by a determinantal point process with an Hermitian kernel. The only assumption is that the variance of \(N(J)\) tends to infinity as \(|J| \rightarrow \infty \). This extends a previous result giving a weaker central limit theorem for these systems. Our result relies on the fact that the Lee–Yang zeros of the generating function for \(\{E(k;J)\}\)—the probabilities of there being exactly \(k\) points in \(J\)—all lie on the negative real \(z\)-axis. In particular, the result applies to the scaled bulk eigenvalue distribution for the Gaussian Unitary Ensemble (GUE) and that of the Ginibre ensemble. For the GUE we can also treat the properly scaled edge eigenvalue distribution. Using identities between gap probabilities, the LCLT can be extended to bulk eigenvalues of the Gaussian Symplectic Ensemble. A LCLT is also established for the probability density function of the \(k\)-th largest eigenvalue at the soft edge, and of the spacing between \(k\)-th neighbors in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akemann, G., Ipsen, J., Kieburg, M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118 (2013)

    Article  ADS  Google Scholar 

  2. Akemann, G., Kieburg, M., Wei, L.: Singular value correlation functions for products of Wishart matrices. J. Phys. A 46, 275205 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bender, E.A.: Central and local limit theorems applied to asymptotic enumeration. J. Combin. Theory Ser. A 15, 91–111 (1973)

    Article  MATH  Google Scholar 

  4. Bornemann, F.: On the numerical evaluation of distributions in random matrix theory: a review. Markov Process. Relat. Fields 16, 803–866 (2010)

    MATH  MathSciNet  Google Scholar 

  5. Bourgade, P., Erdös, L., Yau, H-T.: Edge universality of beta ensembles (2013). arXiv:1306.5728

  6. Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A., Wong, S.S.M.: Random matrix theory. Rev. Mod. Phys. 53, 329–351 (1981)

    Article  MathSciNet  Google Scholar 

  7. Costin, O., Lebowitz, J.L.: Gaussian fluctuations in random matrices. Phys. Rev. Lett. 75, 69–72 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  8. Dobrushin, R.L., Tirozzi, B.: The central limit theorem and the problem of equivalence of ensembles. Commun. Math. Phys. 54, 173–192 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Dyson, F.J.: Statistical theory of energy levels of complex systems III. J. Math. Phys. 3, 166–175 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  10. Dyson, F.J., Mehta, M.L.: Statistical theory of energy levels of complex systems IV. J. Math. Phys. 3, 701–712 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  11. Feller, W.: An Introduction to Probability Theory and its Applications, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  12. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton, NJ (2010)

    MATH  Google Scholar 

  13. Forrester, P.J.: Asymptotics of spacing distributions 50 years later (2012). arXiv:1204.3225

  14. Forrester, P.J., Rains, E.M.: Inter-relationships between orthogonal, unitary and symplectic matrix ensembles. In: Bleher, P.M., Its, A.R. (eds.), Random matrix models and their applications, Mathematical Sciences Research Institute Publications, vol. 40, pp. 171–208. Cambridge University Press, Cambridge (2001)

  15. Forrester, P.J., Witte, N.S.: Painlevé II in random matrix theory and related fields (2012). arXiv:1210.3381.

  16. Fuji, A.: On the zeros of Dirichlet \(L\)-functions I. Trans. Am. Math. Soc. 196, 225–235 (1974)

    Google Scholar 

  17. Gustavsson, J.: Gaussian fluctuations in the GUE. Ann. l’Inst. Henri Poincaré (B) 41, 151–178 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence, RI (2009)

    MATH  Google Scholar 

  19. Its, A.R., Kuilaars, A.B.J., Östensson, J.: Critical edge behaviour in unitary random matrix ensembles and the thirty-fourth Painlevé transcendent. IMRN 2008, rnn017 (2008)

    Google Scholar 

  20. Kujlaars, A.B.J., Zhang, L.: Singular values of products of Gaussian random ma- trices, multiple orthogonal polynomials and hard edge scaling limits. arXiv:1308.1003.

  21. Kargin, V.: On Pfaffian random point fields. J. Stat. Phys. 154, 681–704 (2014)

  22. Keating, J.P., Snaith, N.C.: Random matrix theory and \(\zeta (1/2 + it)\). Commun. Math. Phys. 214, 57–89 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  23. Killip, R.: Gaussian fluctuations for \(\beta \) ensembles. Int. Math. Res. Not. 2008, rnn007 (2008)

    MathSciNet  Google Scholar 

  24. Lebowitz, J.L.: Charge fluctuations in Coulomb systems. Phys. Rev. A 27, 1491–1494 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  25. Lebowitz, J.L., Pittel, B., Ruelle, D., Speer, E.: in preparation.

  26. Maples, K., Rodgers, B.: Bootstrapped zero density estimates and a central limit theorem for the zeros of the zeta function. arXiv:1404.3080.

  27. Martin, PhA, Yalçin, T.: The charge fluctuations in classical Coulomb systems. J. Stat. Phys. 22, 435 (1980)

    Article  ADS  Google Scholar 

  28. Mehta, M.L.: Random Matrices, 2nd edn. Academic Press, New York (1991)

    MATH  Google Scholar 

  29. Mehta, M.L.: Power series for the level spacing functions of random matrix ensembles. Z. Phys. B 86, 285–290 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  30. Mehta, M.L., Dyson, F.J.: Statistical theory of the energy levels of complex systems. V. J. Math. Phys. 4, 713–719 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Niculescu, C.P.: A new look at Newton’s inequalities. J. Inequal. Pure Appl. Math. 1, 17 (2000)

    MathSciNet  Google Scholar 

  32. O’Rourke, S.: Gaussian fluctuations of eigenvalues in Wigner random matrices. J. Stat. Phys. 138, 1045–1066 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Pastur, L., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices. American Mathematical Society, Providence, RI (2011)

    Book  MATH  Google Scholar 

  34. Rodgers, B.: A central limit theorem for the zeros of the zeta function. J. Number Theory 10, 483–511 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  35. Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants. I Fermion, Poisson and boson point processes. J. Funct. Anal. 205, 414–463 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Soshnikov, A.B.: Gaussian fluctuation for the number of particles in Airy, Bessel, Sine, and other determinantal random point fields. J. Stat. Phys. 100, 491–522 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Torquato, S., Scardicchio, A., Zachary, C.E.: Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory. J. Stat. Mech. 2008, P110019 (2008)

    Article  Google Scholar 

  39. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 2nd edn. Cambridge University Press, Cambridge (1965)

    Google Scholar 

Download references

Acknowledgments

The work of PJF was supported by the Australian Research Council. The work of JLL was supported by NSF Grant DMR1104500. JLL thanks B. Pittel, D. Ruelle and particularly E. Speer for very helpful information about LCLT. We thank T. Spencer and H.-T. Yau for the invitation to participate in the IAS Princeton program ‘Non-equilibrium dynamics and random matrices’, thus facilitating the present collaboration, and we thank H. Spohn and P. Sarnak for comments on various drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Forrester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forrester, P.J., Lebowitz, J.L. Local Central Limit Theorem for Determinantal Point Processes. J Stat Phys 157, 60–69 (2014). https://doi.org/10.1007/s10955-014-1071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1071-2

Keywords

Navigation