Skip to main content
Log in

The Correlated Jacobi and the Correlated Cauchy–Lorentz Ensembles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We calculate the k-point generating function of the correlated Jacobi ensemble using supersymmetric methods. We use the result for complex matrices for \(k=1\) to derive a closed-form expression for the eigenvalue density. For real matrices we obtain the density in terms of a twofold integral that we evaluate numerically. For both expressions we find agreement when comparing with Monte Carlo simulations. Relations between these quantities for the Jacobi and the Cauchy–Lorentz ensemble are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We thank Petr Braun for showing us this technical trick.

References

  1. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  2. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (2005)

    Google Scholar 

  3. Johnstone, I.M.: High dimensional statistical inference and random matrices. Proc. Int. Cong. Math. 1, 307–333 (2006)

    Google Scholar 

  4. Johnstone, I.M.: Multivariate analysis and Jacobi ensembles: largest eigenvalue, Tracy-Widom limits and rates of convergence. Ann. Stat. 36, 2638–2716 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Johnstone, I.M.: Approximate null distribution of the largest root in multivariate analysis. Ann. Appl. Stat. 3, 1616–1633 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, London (1979)

    MATH  Google Scholar 

  7. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Pearson Education, Upper Saddle River (2013)

    Google Scholar 

  8. Adler, M., Forrester, P.J., Nagao, T., van Moerbeke, P.: Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99, 141–170 (2000). arXiv:solvint/9907001

  9. Ghosh, S., Pandey, A.: Skew-orthogonal polynomials and random-matrix ensembles. Phys. Rev. E 65, 046221-1–046221-21 (2002)

    MathSciNet  ADS  Google Scholar 

  10. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  11. Kumar, S., Pandey, A.: Crossover ensembles of random matrices and skew-orthogonal polynomials. Ann. Phys. (NY) 326, 1877–1915 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Kaymak, V., Kieburg, M., Guhr, T.: The supersymmetry method for chiral random matrix theory with arbitrary rotation-invariant weights. J. Phys. A 47, 295201-1–25 (2014). arXiv:1402.3458[math-ph]

  13. Kieburg, M.: Supersymmetry for products of random matrices. Acta Phys. Pol. B 46, 1709–1728 (2015). arXiv:1502.00550 [math-ph]

  14. Burda, Z., Jurkiewicz, J., Nowak, M.A., Papp, G., Zahed, I.: Free random Lévy variables and financial probabilities (2001). cond-mat/0103140

  15. Burda, Z., Jurkiewicz, J., Nowak, M.A., Papp, G., Zahed, I.: Lévy matrices and financial covariances. Acta Phys. Pol. B 34, 4747–4763 (2003). cond-mat/0103108

  16. Burda, Z., Jurkiewicz, J., Nowak, M.A., Papp, G., Zahed, I.: Free Lévy matrices and financial correlations, Phys. A 343, 694–700 (2004). cond-mat/0103109

  17. Burda, Z., Jurkiewicz, J., Nowak, M.A., Papp, G., Zahed, I.: Free random Lévy and Wigner-Lévy matrices. Phys. Rev. E 75, 051126-1–051126-11 (2007). cond-mat/0602087

  18. Beenakker, C.W.J.: Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997). cond-mat/9612179

  19. Forrester, P.J.: Quantum conductance problems and the Jacobi ensemble. J. Phys. A 39, 6861–6870 (2006). math-ph/0601024

  20. Savin, D.V., Sommers, H.-J.: Shot noise in chaotic cavities with an arbitrary number of open channels. Phys. Rev. B 73, 081307-1–081307-3(R) (2006). cond-mat/0512620

  21. Savin, D.V., Sommers, H.-J., Wieczorek, W.: Nonlinear statistics of quantum transport in chaotic cavities. Phys. Rev. B 77, 125332-1–125332-5 (2008). arXiv:0711.1764[cond-mat.mes-hall]

  22. Kumar, S., Pandey, A.: Jacobi crossover ensembles of random matrices and statistics of transmission eigenvalues. J. Phys. A 43, 085001-1–22 (2010). arXiv:1105.4353 [cond-mat.stat-mech]

  23. Vivo, P., Majumdar, S.N., Bohigas, O.: Probability distributions of linear statistics in chaotic cavities and associated phase transitions. Phys. Rev. B 81, 104202-1–104202-23 (2010). arXiv:0909.2974 [cond-mat.mes-hall]

  24. Mezzadri, F., Simm, N.J.: Moments of the transmission eigenvalues, proper delay times and random matrix theory I. J. Math. Phys. 52, 103511-1–33 (2011). arXiv:1103.6203 [math-ph]

  25. Mezzadri, F., Simm, N.J.: Moments of the transmission eigenvalues, proper delay times and random matrix theory II. J. Math. Phys. 53, 053504-1–45 (2012). arXiv:1108.2859 [math-ph]

  26. Mezzadri, F., Simm, N.J.: Tau-function theory of chaotic quantum transport. Commun. Math. Phys. 324, 465–513 (2013) arXiv:1206.4584 [math-ph]

  27. Dar, R., Feder, M., Shtaif, M.: The Jacobi MIMO channel: achieving the no-outage promise. In: IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI), pp. 441–445 (2012)

  28. Dar, R., Feder, M., Shtaif, M.: The Jacobi MIMO Channel. IEEE Trans. Inf. Theory 59, 2426–2441 (2013). arXiv:1202.0305 [cs.IT]

  29. Karadimitrakis, A., Moustakas, A.L., Vivo, P.: Outage capacity for the optical MIMO channel. IEEE Trans. Inf. Theory 60, 4370–4382 (2014). arXiv:1302.0614 [cs.IT]

  30. Toole, J.L., Eagle, N., Plotkin, J.B.: Spatiotemporal correlations in criminal offense records. ACM Trans. Intell. Syst. Technol. 2(38), 1–18 (2011)

    Article  Google Scholar 

  31. Alfano, G., Tulino, A.M., Lozano, A., Verdú, S.: Capacity of MIMO channels with one-sided correlation. In: Spread Spectrum Techniques and Applications. IEEE, pp. 515–519 (2004)

  32. Forrester, P.J.: Eigenvalue distributions for some correlated complex sample covariance matrices. J. Phys. A 40, 11093–11103 (2007). arXiv:math-ph/0602001

  33. Recher, C., Kieburg, M., Guhr, T.: Eigenvalue densities of real and complex Wishart correlation matrices. Phys. Rev. Lett. 105, 244101-1–244101-4 (2010). arXiv:1006.0812 [math-ph]

  34. Recher, C., Kieburg, M., Guhr, T., Zirnbauer, M.R.: Supersymmetry approach to Wishart correlation matrices: exact results. J. Stat. Phys. 148, 981–998 (2012). arXiv:1012.1234 [math.ST]

  35. Wirtz, T., Kieburg, M., Guhr, T.: Asymptotic relation between the statistics of degenerate and non-degenerate Wishart ensembles 1–5 (2015). arXiv:1504.03177 [math-ph]

  36. Wirtz, T., Kieburg, M., Guhr, T.: Limiting statistics of the largest and smallest eigenvalues in the correlated Wishart model. Europhys. Lett. 109, 20005-p1–20005-p6 (2015). arXiv:1410.4719 [math-ph]

  37. Simon, S.H., Moustakas, A.L.: Eigenvalue density of correlated complex random Wishart matrices, Phys. Rev. E 69, 065101-1–065101-4(R) (2004). arXiv:math-ph/0401038]

  38. Waltner, D., Wirtz, T., Guhr, T.: Eigenvalue density of the doubly correlated Wishart model: exact results. J. Phys. A 48, 175204-1–18 (2015). arXiv:1412.3092 [math-ph]

  39. Guhr, T., Müller-Groeling, A., Weidenmüller, H. A.: Random-matrix theories in quantum physics: common concepts. Phys. Rept. 299, 189–425 (1998). cond-mat/9707301]

  40. Haake, F.: Quantum Signatures of Chaos. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  41. Mehta, M.L.: Random Matrices, 3rd edn. Academic Press, New York (2004)

    MATH  Google Scholar 

  42. Dumitriu, I., Edelman, A., Shuman, G.: MOPS: multivariate orthogonal polynomials(symbolically). J. Symb. Comput. 42, 587–620 (2007). arXiv:math-ph/0409066

  43. Dubbs, A., Edelman, A.: The beta-manova ensemble with general covariance Random Matrices03, 1450002-1–1450002-16 (2014). arXiv:1309.4328 [math.PR]

  44. Ipsen, J.R., Kieburg, M.: Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Phys. Rev. E 89, 032106-1–032106-20 (2014). arXiv:1310.4154 [math-ph]

  45. Berezin, F.: Introduction to Superanalysis, 1st edn. D. Reidel Publishing Company, Dordrecht (1987)

    Book  MATH  Google Scholar 

  46. Efetov, K.: Supersymmetry in Disorder and Chaos, 1st edn. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  47. Guhr, T.: Supersymmetry, Chapter 7 (135-153). In: Akemann, G., Baik, J., Di Francesco, P. (eds.) The Oxford Handbook of Random Matrix Theory, 1st edn. Oxford University Press, Oxford (2011). arXiv:1005.0979 [math-ph]

  48. Sommers, H.-J.: Superbosonization. Acta Phys. Pol. B 38, 4105–4110 (2007). arXiv:0710.5375 [cond-mat.stat-mech]

  49. Littelmann, P., Sommers, H.-J., Zirnbauer, M.R.: Superbosonization of invariant random matrix ensembles. Commun. Math. Phys. 283, 343–395 (2008). arXiv:0707.2929 [math-ph]

  50. Kieburg, M., Sommers, H-J., Guhr, T.: A comparison of the superbosonization formula and the generalized Hubbard–Stratonovich transformation. J. Phys. A 42, 275206-1–23 (2009). arXiv:0905.3256 [math-ph]

  51. Zirnbauer, M.R.: Riemannian symmetric superspaces and their origin in random-matrix theory. J. Math. Phys. 37, 4986–5018 (1996). arXiv:math-ph/9808012

  52. Guhr, T.: Arbitrary unitarily invariant random matrix ensembles and supersymmetry. J. Phys. A 39, 13191–13223 (2006). arXiv:math-ph/0606014

  53. Kieburg, M., Grönqvist, J., Guhr, T.: Arbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary-symplectic case. J. Phys. A 42, 275205-1–31 (2009). arXiv:0905.3253 [math-ph]

  54. Gross, K.I., Richards, D.S.P.: Total positivity, spherical series, and hypergeometric functions of matrix argument. J. Approx. Theory 59, 22–246 (1989)

    Article  MathSciNet  Google Scholar 

  55. Harnad, J., Orlov, A.Y.: Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions. J. Phys. A 39, 8783–8809 (2006). arXiv:math-ph/0512056

  56. Andréief, C.: Note sur une relation les intégrales définies des produits des fonctions. Mém. de la Soc. Sci., Bordeaux 2, 1–14 (1883)

  57. Kieburg, M., Guhr, T.: Derivation of determinantal structures for random matrix ensembles in a new way. J. Phys. A 43, 075201-1–31 (2010). arXiv:0912.0654 [math-ph]

  58. Parisi, G., Sourlas, N.: Random magnetic fields, supersymmetry, and negative dimensions. Phys. Rev. Lett. 43, 744–745 (1979)

    Article  ADS  Google Scholar 

  59. Wegner, F.: Unpublished notes (1983)

  60. Efetov, K.: Supersymmetry and theory of disordered metals. Adv. Phys. 32, 53–127 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  61. Constantinescu, F.: The supersymmetric transfer matrix for linear chains with nondiagonal disorder. J. Stat. Phys. 50, 1167–1177 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. Constantinescu, F., de Groote, H.: The integral theorem for supersymmetric invariants. J. Math. Phys. 30, 981–992 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. Kieburg, M., Kohler, H., Guhr, T.: Integration of Grassmann variables over invariant functions on flat superspaces. J. Math. Phys. 50, 013528-1–013528-24 (2009). arXiv:0809.2674 [math-ph]

  64. Akemann, G., Ipsen, J., Kieburg, M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118-1–052118-13 (2013). arXiv:1307.7560 [math-ph]

  65. Verbaarschot, J., Zirnbauer, M., Weidenmüller, H.A.: Grassmann integration in stochastic quantum physics: the case of compound-nucleus scattering. Phys. Rep. 129, 367–438 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  66. Akemann, G., Ipsen, J.R.: Recent exact and asymptotic results for products of independent random matrices. Acta Phys. Pol. B 46, 1747–1784 (2015). arXiv:1502.01667 [math-ph]

  67. Wirtz, T., Guhr, T.: Distribution of the smallest eigenvalue in the correlated Wishart model. Phys. Rev. Lett. 111, 094101-1–094101-5 (2013). arXiv:1306.4790 [math-ph]

  68. Wirtz, T., Guhr, T.: Distribution of the smallest eigenvalue in complex and real correlated Wishart ensembles. J. Phys. A 47, 075004-1–28 (2014). arXiv:1310.2467 [math-ph]

Download references

Acknowledgments

T.W. acknowledges support from the German Research Council (DFG) via the Sonderforschungsbereich Transregio 12, “Symmetries and Universality in Mesoscopic Systems”. M.K. partially acknowledges financial support from the Alexander von Humboldt-Foundation and from the CRC 701: Spectral Structures and Topological Methods in Mathematics of the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Waltner.

Appendices

Appendix 1: Supersymmetric Two-Matrix Model

Let us derive another supersymmetric integral which consists of two supermatrices entering in a symmetric way. This integral explicitly shows the symmetry of the correlated Jacobi ensemble under \(n_1\leftrightarrow n_2\), \(\Lambda \rightarrow \Lambda ^{-1}\), and \(x\rightarrow -x\). This symmetry is not immediate in the expression (20) where we have to substitute \(b=(1-x)/(1+x)\) since it is given for the correlated Cauchy ensemble. However the supersymmetric integral (20) is certainly simpler to compute than the one we present in this section since we have to deal with only one supermatrix in Eq. (20).

We start from Eq. (4). To apply the same approach as in [33, 34] we have to linearize the arguments of the characteristic polynomials in the \(FF^\dagger \) and \(BB^\dagger \). This can be achieved by multiplying the matrices in the determinants from the right with \((FF^\dagger + BB^\dagger )\) yielding

$$\begin{aligned} \frac{\det \left( (FF^\dagger - BB^\dagger )(FF^\dagger + BB^\dagger )^{-1} - \kappa _{a2}\mathbbm {1}_{p}\right) }{\det \left( (FF^\dagger - BB^\dagger )(FF^\dagger + BB^\dagger )^{-1}- \kappa _{b1}\mathbbm {1}_{p}\right) } = \left( \frac{1+\kappa _{a2}}{1+\kappa _{b1}}\right) ^p\frac{\det \left( FF^\dagger \widehat{\kappa }_{a2} - BB^\dagger \right) }{\det \left( FF^\dagger \widehat{\kappa }_{b1} - BB^\dagger \right) }. \end{aligned}$$
(72)

with \(\widehat{\kappa }=(1-\kappa )/(1+\kappa )\). In the next step we plug Eq. (72) into Eq. (4) and express the determinants as a Gaussian integral over a rectangular supermatrix

$$\begin{aligned} A= & {} \left[ z_{ja}\,z_{ja}^*\,\zeta _{jb}\,\zeta _{jb}^*\right] ,\ \beta =1,\end{aligned}$$
(73)
$$\begin{aligned} A= & {} \left[ z_{ja}\,\zeta _{jb}\right] ,\ \beta =2, \end{aligned}$$
(74)

of dimension \(p\times (\gamma k|\gamma k)\), i.e.

$$\begin{aligned} \prod _{a=1}^k\frac{\det \left( FF^\dagger \widehat{\kappa }_{a2} - BB^\dagger \right) }{\det \left( FF^\dagger \widehat{\kappa }_{a1} - BB^\dagger \right) }&= \int d[A]\exp \left( \imath {{\mathrm{tr}}}FF^\dagger A\mathbf {j}A^\dagger + \imath {{\mathrm{tr}}}BB^\dagger AA^\dagger \right) . \end{aligned}$$
(75)

Here we assume for simplicity that the imaginary parts of \(\widehat{\kappa }_1=\mathrm{diag}(\widehat{\kappa }_{11},\ldots ,\widetilde{\kappa }_{k1})\) are on the complex upper half-plane. The source matrix is

$$\begin{aligned} \mathbf {j}={{\mathrm{diag}}}\left( \widehat{\kappa }_{11},\ldots ,\widetilde{\kappa }_{k1},\widehat{\kappa }_{12},\ldots ,\widetilde{\kappa }_{k2}\right) \otimes \mathbbm {1}_\gamma . \end{aligned}$$
(76)

We substitute the integral (75) into the generating function (4) and exchange the integrals over F and B with the A integral. The resulting F and B integrals are Gaussian and yield

$$\begin{aligned}&\int d[F]\int d[B]P(F|\mathbbm {1}_p)P(B|\Lambda ) \exp \left( \imath {{\mathrm{tr}}}FF^\dagger A\mathbf {j}A^\dagger + \imath {{\mathrm{tr}}}BB^\dagger AA^\dagger \right) \nonumber \\&\quad = {\det }^{-n_1/\gamma } \left( \mathbbm {1}_{p}-\imath A\mathbf {j}A^\dagger \right) {\det }^{-n_2/\gamma } \left( \mathbbm {1}_{p}-\imath \Lambda A A^\dagger \right) . \end{aligned}$$
(77)

Then the generating function becomes

$$\begin{aligned} Z_{p,\beta }^{k|k}(\kappa ) \propto {{{\mathrm{sdet}}}}^{-p}\left( \mathbbm {1}_{k}+\kappa \right) \int d[A] {\det }^{-n_1/\gamma }\left( \mathbbm {1}_{p}-\imath A\mathbf {j}A^\dagger \right) {\det }^{-n_2/\gamma }\left( \mathbbm {1}_{p}-\imath \Lambda AA^\dagger \right) . \end{aligned}$$
(78)

The normalization constant is independent of \(\kappa \) and \(\Lambda \). The next step is known as the duality between ordinary and superspace. Due to the invariance of the integrand in Eq. (78) under \(A\rightarrow UA\) for an arbitrary \(U\in \mathrm{O}(p)\) for \(\beta =1\) and \(U\in \mathrm{U}(p)\) for \(\beta =2\), the integrand only depends on the invariants \({{\mathrm{tr}}}\left( AA^\dagger \right) ^m\) for \(m\in \mathbb N\). These invariants are equal to the superinvariants \({{\mathrm{tr}}}\left( AA^\dagger \right) ^m={{\mathrm{str}}}\left( A^\dagger A\right) ^m\), see [46, 47, 52, 53]. Employing this duality in the generating function (78), we arrive at

$$\begin{aligned} Z_{p,\beta }^{k|k}(\kappa )\propto {{\mathrm{sdet}}}^{-p}\left( \mathbbm {1}_{k}+\kappa \right) \int d[A] {{{\mathrm{sdet}}}}^{-n_1/\gamma }\left( \mathbbm {1}_{{\gamma } k|\gamma k}-\imath A^\dagger A \mathbf {j}\right) {{{\mathrm{sdet}}}}^{-n_2/\gamma }\left( \mathbbm {1}_{\gamma k|\gamma k}-\imath A^\dagger \Lambda A\right) . \end{aligned}$$
(79)

The main difference of Eq. (79) to most models discussed in the literature so far is that this one includes two different products of A and \(A^\dagger \). Namely, \(A^\dagger A \) which arises naturally if invariant matrix models are considered and \(A^\dagger \Lambda _{\text {eff}}A\) appearing due to a non-trivial correlation structure. We cannot replace both products by one supermatrix, but we can apply the generalized Hubbard–Stratonovich transformation [50, 52, 53] independently for both products. It yields the following supersymmetric two-matrix model

$$\begin{aligned} Z_{p,\beta }^{k|k}(\kappa )&\propto {{\mathrm{sdet}}}^{-p}\left( \mathbbm {1}_{k}+\kappa \right) \int d[\sigma ]d[\varrho ] I_{n_2}(\varrho )I_{n_1}(\sigma )\exp \left( -{{\mathrm{str}}}\varrho -{{\mathrm{str}}}\sigma \right) \nonumber \\&\quad \times {{\mathrm{sdet}}}^{-1/\gamma }\left( \mathbbm {1}_p\otimes \sigma - \Lambda ^{-1}\otimes \varrho \mathbf {j}\right) , \end{aligned}$$
(80)

where the function \(I_{n_i}(\varrho )\), \(i=1,2\), is the supersymmetric Ingham–Siegel integral (24). The \((\gamma k|\gamma k)\times (\gamma k|\gamma k)\) dimensional supermatrices \(\rho \) and \(\sigma \) have the same symmetries as the supermatrix in the third equality of Eq. (20).

We can completely symmetrize the integral in \(\rho \) and \(\sigma \) by going back to the sources \(\widehat{\kappa }\rightarrow \kappa \) and the empirical matrix \(\Lambda \rightarrow C_F^{-1/2}C_BC_F^{-1/2}\). Then we have the final result

$$\begin{aligned} Z_{p,\beta }^{k|k}(\kappa )&\propto \int d[\sigma ]d[\varrho ] I_{n_1}(\varrho )I_{n_2}(\sigma )\exp \left( -{{\mathrm{str}}}\varrho -{{\mathrm{str}}}\sigma \right) \nonumber \\&\quad \times {{\mathrm{sdet}}}^{-1/\gamma }\left( C_B\otimes \sigma [(1+\kappa )\otimes \mathbbm {1}_\gamma ] - C_F\otimes \varrho [(1-\kappa )\otimes \mathbbm {1}_\gamma ] \right) . \end{aligned}$$
(81)

This expression is completely invariant under the original symmetry \(n_1\leftrightarrow n_2\), \(\Lambda \rightarrow \Lambda ^{-1}\), and \(\kappa \rightarrow -\kappa \) because the symmetry is achieved by the change \(\rho \leftrightarrow \sigma \).

We again underline that the supermatrix model (80) can be in principal computed by expanding the integrand in the Grassmann variables and performing the remaining integrals. However we have now two supermatrices such that this calculation can be a highly non-trivial task. This is the reason why we use more advanced techniques which involve the relation to the correlated Cauchy–Lorentz ensemble, see Sect. 3.1. The supersymmetry result (20) can be obtained from Eq. (80) by rescaling \(\sigma \rightarrow \rho \sigma \) and then integrating over \(\rho \) which yields the superdeterminant \({{\mathrm{sdet}}}^{-\mu /\gamma }(\sigma +\mathbbm {1}_{\gamma k|\gamma k})\).

Appendix 2: Regularizations of the Integrals in Section 5

The numerical evaluation of the integrals (51) and (52) suffer from the non-integrable singularities of order 3 / 2 at the boundaries, in particular they are of the two forms

$$\begin{aligned} J_1=\int \limits _{b\Lambda _{j+1}^{-1}}^{b\Lambda _j^{-1}}d{r}\frac{f(r)}{\left| b\Lambda _j^{-1}-r\right| ^{3/2}},\quad J_2=\int \limits _{b\Lambda _j^{-1}}^{b\Lambda _{j-1}^{-1}}d{r}\frac{f(r)}{\left| b\Lambda _j^{-1}-r\right| ^{3/2}} \end{aligned}$$
(82)

for certain real valued functions f(r) without singularities in the interval \([b\Lambda _{j+1}^{-1},b\Lambda _j^{-1}]\). As already said the integrals are taken via Cauchy’s principal value because of the original imaginary increment \(\imath \varepsilon \). Thus we can effectively regularize the integral as followsFootnote 1

$$\begin{aligned} J_1&= \lim _{\varepsilon \rightarrow 0}\mathrm{Re}\int \limits _{b\Lambda _{j+1}^{-1}}^{b\Lambda _j^{-1}+\varepsilon }d{r}\frac{f(r)}{\left( (b+\imath \varepsilon )\Lambda _j^{-1}-r\right) ^{3/2}}\nonumber \\&=\lim _{\varepsilon \rightarrow 0}\mathrm{Re}\int \limits _{b\Lambda _{j+1}^{-1}}^{b\Lambda _j^{-1}+\varepsilon }d{r}\frac{f(r)-f(b\Lambda _{j}^{-1})}{\left( (b+\imath \varepsilon )\Lambda _j^{-1}-r\right) ^{3/2}}+\lim _{\varepsilon \rightarrow 0}\mathrm{Re}\left[ \frac{2f(b\Lambda _{j}^{-1})}{\sqrt{(b+\imath \varepsilon )\Lambda _j^{-1}-r}}\right] _{r=b\Lambda _{j+1}^{-1}}^{b\Lambda _j^{-1}+\varepsilon } \nonumber \\&=\int \limits _{b\Lambda _{j+1}^{-1}}^{b\Lambda _j^{-1}}d{r}\frac{f(r)-f(b\Lambda _j^{-1})}{\left| b\Lambda _j^{-1}-r\right| ^{3/2}}-\frac{2f(b\Lambda _{j}^{-1})}{\sqrt{|b\Lambda _j^{-1}-b\Lambda _{j+1}^{-1}|}} \end{aligned}$$
(83)

and similar for the other integral (then the imaginary part is needed)

$$\begin{aligned} J_2&= \int \limits _{b\Lambda _j^{-1}}^{b\Lambda _{j-1}^{-1}}d{r}\frac{f(r)-f(b\Lambda _j^{-1})}{\left| b\Lambda _j^{-1}-r\right| ^{3/2}}-\frac{2f(b\Lambda _{j}^{-1})}{\sqrt{|b\Lambda _j^{-1}-b\Lambda _{j-1}^{-1}|}}. \end{aligned}$$
(84)

The minus sign in Eq. (84) in front of the second term results from taking the imaginary part despite it is evaluated at the upper boundary. The cut-off of the intervals can be also chosen independently of \(\varepsilon \). The reason is that the other boundary term of the integration by parts vanishes due to taking the real or imaginary part, respectively.

We define the following two one-fold integrals

$$\begin{aligned} g_{a,c,l}^0(b;\Lambda )=\int _{V_l}\frac{r^{a/2}dr}{(1+r)^{c/2}\sqrt{|\det (b\Lambda ^{-1}-r\mathbbm {1}_p)|}} \end{aligned}$$
(85)

and

$$\begin{aligned}&g_{a,c,l}^1(b;\Lambda ;\Lambda _i)\\= & {} \left\{ \begin{array}{ll} \displaystyle \mathrm{sign}(p-l-i)\int _{V_l}\frac{r^{a/2}dr}{(1+r)^{c/2}|b\Lambda _i^{-1}-r|\sqrt{|\det (b\Lambda ^{-1}-r\mathbbm {1}_p)|}}, &{} \\ &{} l\ne p-i,p-i+1,\\ &{}\\ \displaystyle -\frac{2(b\Lambda _{i}^{-1})^{a/2}}{(1+b\Lambda _{i})^{c/2}\sqrt{|b\Lambda _i^{-1}-b\Lambda _{i+1}^{-1}|}\sqrt{|\det (b\Lambda _{\ne i}^{-1}-b\Lambda _{i}^{-1}\mathbbm {1}_{p-1})|}}+\int _{V_{p-i}}\frac{dr}{|b\Lambda _i-r|^{3/2}}&{} \\ \displaystyle \times \left[ \frac{r^{a/2}}{(1+r)^{c/2}\sqrt{|\det (b\Lambda _{\ne i}^{-1}-r\mathbbm {1}_{p-1})|}}-\frac{(b\Lambda _i^{-1})^{a/2}}{(1+b\Lambda _i^{-1})^{c/2}\sqrt{|\det (b\Lambda _{\ne i}^{-1}-b\Lambda _i^{-1}\mathbbm {1}_{p-1})|}}\right] ,&{}\\ &{} l=p-i,\\ &{}\\ \displaystyle \frac{2(b\Lambda _{i}^{-1})^{a/2}}{(1+b\Lambda _{i})^{c/2}\sqrt{|b\Lambda _i^{-1}-b\Lambda _{i-1}^{-1}|}\sqrt{|\det (b\Lambda _{\ne i}^{-1}-b\Lambda _{i}^{-1}\mathbbm {1}_{p-1})|}}-\int _{V_{p-i+1}}\frac{dr}{|b\Lambda _i-r|^{3/2}}&{} \\ \displaystyle \times \left[ \frac{r^{a/2}}{(1+r)^{c/2}\sqrt{|\det (b\Lambda _{\ne i}^{-1}-r\mathbbm {1}_{p-1})|}}-\frac{(b\Lambda _i^{-1})^{a/2}}{(1+b\Lambda _i^{-1})^{c/2}\sqrt{|\det (b\Lambda _{\ne i}^{-1}-b\Lambda _i^{-1}\mathbbm {1}_{p-1})|}}\right] ,&{}\\ &{} l=p-i+1. \end{array}\right. \nonumber \end{aligned}$$
(86)

Then we can combine the discussion about the splitting of the integral over \(\mathbb {R}_+^2\) into disjoint sets and the regularization of the 3 / 2-singularities. Therefore we explicitly have for the imaginary parts of the integrals (50), (51), and (52)

$$\begin{aligned}&\frac{1}{\pi }\lim _{\varepsilon \rightarrow 0}\mathrm{Im}\,N_{a,c,d_1,d_2}^0(b+\imath \varepsilon ;\Lambda )\\&\quad =\frac{1}{\pi }\sum _{\begin{array}{c} 0\le l_1,l_2\le p \\ l_1+l_2\in 2\mathbb {N}_0+1 \end{array}}(-1)^{(l_1+l_2+1)/2}\mathrm{sign}(l_1-l_2) \nonumber \\&\qquad \times \,\det \left[ \begin{array}{cc} g_{a+d_1+1,c+d_1+1,l_1}^0(b;\Lambda ) &{} g_{a+d_1-1,c+d_1+1,l_1}^0(b;\Lambda ) \\ g_{a+d_2+1,c+d_2+1,l_2}^0(b;\Lambda ) &{} g_{a+d_2-1,c+d_2+1,l_2}^0(b;\Lambda ) \end{array}\right] ,\nonumber \end{aligned}$$
(87)
$$\begin{aligned}&\frac{1}{\pi }\lim _{\varepsilon \rightarrow 0}\mathrm{Im}\,N_{a,c,d}^1(\kappa ;\Lambda ;\Lambda _j)\\&\quad =\frac{1}{\pi }\sum _{\begin{array}{c} 0\le l_1,l_2\le p \\ l_1+l_2\in 2\mathbb {N}_0+1 \end{array}}(-1)^{(l_1+l_2+1)/2}\mathrm{sign}(l_1-l_2) \nonumber \\&\qquad \times \det \left[ \begin{array}{cc} g_{a+2,c,l_1}^1(b;\Lambda ;\Lambda _j) &{} g_{a,c,l_1}^1(b;\Lambda ;\Lambda _j) \\ g_{a+d+1,c+d+1,l_2}^0(b;\Lambda ) &{} g_{a+d-1,c+d+1,l_2}^0(b;\Lambda ) \end{array}\right] ,\nonumber \end{aligned}$$
(88)
$$\begin{aligned}&\frac{1}{\pi }\lim _{\varepsilon \rightarrow 0}\mathrm{Im}\,N_{a,c}^2(\kappa ;\Lambda ;\Lambda _i,\Lambda _j)\\&\quad =\frac{1}{\pi }\sum _{\begin{array}{c} 0\le l_1,l_2\le p \\ l_1+l_2\in 2\mathbb {N}_0+1 \end{array}}(-1)^{(l_1+l_2+1)/2}\mathrm{sign}(l_1-l_2)\nonumber \\&\qquad \times \,\det \left[ \begin{array}{cc} g_{a+2,c,l_1}^1(b;\Lambda ;\Lambda _i) &{} g_{a,c,l_1}^1(b;\Lambda ;\Lambda _i) \\ g_{a+2,c,l_2}^1(b;\Lambda ;\Lambda _j) &{} g_{a,c,l_2}^1(b;\Lambda ;\Lambda _j) \end{array}\right] .\nonumber \end{aligned}$$
(89)

These results can be combined with Eq. (48) to find the level density \(S'_1(b)\) of the correlated Lorentz ensemble, see Eq. (59).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirtz, T., Waltner, D., Kieburg, M. et al. The Correlated Jacobi and the Correlated Cauchy–Lorentz Ensembles. J Stat Phys 162, 495–521 (2016). https://doi.org/10.1007/s10955-015-1416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1416-5

Keywords

Navigation