Skip to main content
Log in

Information Dimension of Stochastic Processes on Networks: Relating Entropy Production to Spectral Properties

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider discrete stochastic processes, modeled by classical master equations, on networks. The temporal growth of the lack of information about the system is captured by its non-equilibrium entropy, defined via the transition probabilities between different nodes of the network. We derive a relation between the entropy and the spectrum of the master equation’s transfer matrix. Our findings indicate that the temporal growth of the entropy is proportional to the logarithm of time if the spectral density shows scaling. In analogy to chaos theory, the proportionality factor is called (stochastic) information dimension and gives a global characterization of the dynamics on the network. These general results are corroborated by examples of regular and of fractal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that other definitions of the spectral dimension(s) based on \(p_{jj}(t)\) and \(\overline{p}(t)\) exist [2, 3, 10].

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation, Washington (1964)

    MATH  Google Scholar 

  2. Agliari, E., Blumen, A., Cassi, D.: Slow encounters of particle pairs in branched structures. Phys. Rev. E 89(5), 052147 (2014)

    Article  ADS  Google Scholar 

  3. Agliari, E., Contucci, P., Giardina, C.: A Random Walk in Diffusion Phenomena and Statistical Mechanics. Advances in Disordered Systems, Random Processes and Some Applications, p. 43. Cambridge university press, Cambridge (2016)

  4. Alexander, S., Orbach, R.: Density of states on fractals: fractons. J. Phys. Lett. 43, 625–631 (1982)

    Article  Google Scholar 

  5. Argyrakis, P.: Information dimension in random-walk processes. Phys. Rev. Lett. 59(15), 1729 (1987)

    Article  ADS  Google Scholar 

  6. Ashcroft, N.W., Mermin, D.: Solid State Physics. Saunders, Philadelphia (1976)

    MATH  Google Scholar 

  7. Blumen, A., Jurjiu, A., Koslowski, T., von Ferber, C.: Dynamics of Vicsek fractals, models for hyperbranched polymers. Phys. Rev. E 67(6), 061103 (2003)

    Article  ADS  Google Scholar 

  8. Burioni, R., Cassi, D.: Fractals without anomalous diffusion. Phys. Rev. E 49(3), R1785 (1994)

    Article  ADS  Google Scholar 

  9. Burioni, R., Cassi, D.: Spectral dimension of fractal trees. Phys. Rev. E 51(4), 2865 (1995)

    Article  ADS  Google Scholar 

  10. Burioni, R., Cassi, D.: Random walks on graphs: ideas, techniques and results. J. Phys. A Math. Gen. 38(8), R45 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cai, C., Chen, Z.Y.: Rouse dynamics of a dendrimer model in the \(\theta \) condition. Macromolecules 30, 5104–5117 (1997)

    Article  ADS  Google Scholar 

  12. Cherstvy, A.G., Chechkin, A.V., Metzler, R.: Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New J. Phys. 15(8), 083039 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Esposito, M.: Stochastic thermodynamics under coarse graining. Phys. Rev. E 85(4), 041125 (2012)

    Article  ADS  Google Scholar 

  14. Fürstenberg, F., Dolgushev, M., Blumen, A.: Analytical model for the dynamics of semiflexible dendritic polymers. J. Chem. Phys. 136, 154904 (2012)

    Article  ADS  Google Scholar 

  15. Gotlib, Y.Y., Markelov, D.A.: Theory of the relaxation spectrum of a dendrimer macromolecule. Polym. Sci. Ser. A 44(12), 1341–1350 (2002)

    Google Scholar 

  16. Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529(2), 199 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gurtovenko, A.A., Markelov, D.A., Gotlib, Y.Y., Blumen, A.: Dynamics of dendrimer-based polymer networks. J. Chem. Phys. 119, 7579 (2003)

    Article  ADS  Google Scholar 

  18. van Kampen, N.: Stochastic Processes in Physics and Chemistry. North Holland, Amsterdam (1990)

    MATH  Google Scholar 

  19. Klafter, J., Zumofen, G., Blumen, A.: On the propagator of Sierpinski gaskets. J. Phys. A Math. Gen. 24, 4835–4842 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  20. Metzler, R., Redner, S., Oshanin, G.: First-Passage Phenomena and Their Applications, vol. 35. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  21. Mielke, J., Dolgushev, M.: Relaxation dynamics of semiflexible fractal macromolecules. Polymers 8(7), 263 (2016)

    Article  Google Scholar 

  22. Mülken, O., Blumen, A.: Efficiency of quantum and classical transport on graphs. Phys. Rev. E 73, 066117 (2006)

    Article  ADS  Google Scholar 

  23. Mülken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37–87 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  25. Pitsianis, N., Bleris, G., Argyrakis, P.: Information dimension in fractal structures. Phys. Rev. B 39(10), 7097 (1989)

    Article  ADS  Google Scholar 

  26. Reichl, L.E.: A Modern Course in Statistical Mechanics. University on Texas Press, Austin (1980)

    MATH  Google Scholar 

  27. Schijven, P., Mülken, O.: Information Dimension of Dissipative Quantum Walks. arXiv preprint arXiv:1408.3037 (2014)

  28. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012)

    Article  ADS  Google Scholar 

  29. Van den Broeck, C., Esposito, M.: Ensemble and trajectory thermodynamics: a brief introduction. Phys. A 418, 6 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alex Blumen for fruitful discussion and valuable comments. M.D. acknowledges the support through Grant No. GRK 1642/1 of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Dolgushev.

Appendix: \(NT_D\) Graph

Appendix: \(NT_D\) Graph

In this Appendix we extend our results by considering a structure with a non-monotonous density of states \(\rho (\lambda )\).

Fig. 4
figure 4

(color online) a Sketch of an \(NT_D\) graph of generation \(G=4\) and \(k=2\). b Entropy \(\overline{S}(t)\) and the leading term of \(\overline{S}_\mathrm{mf}(t)\), Eq. (10), for \(NT_D\) graph of \(k=2\) and \(G=3\). c The behavior of \(-\ln [\overline{p}(t)]\), \((d_s^{\mathrm {lin}}/2) \ln (t)\) and \((d_s^{\mathrm {br}}/2) \ln (t)\), for \(G=6\) and \(k=2\)

In Fig. 4a we illustrate the construction of the so-called \(NT_D\) graph [8,9,10]. At every iteration G to each end-node of these trees k linear chains of length \(2^G\) are attached. In this way, the Laplacian spectrum of the \(NT_D\) graphs is dominated by the behavior of the linear chains, whose spectral dimension is \(d_s^{\mathrm {lin}}=1\). On the other hand, for these trees the states corresponding to the smallest eigenvalues are described by the relaxation of the branches as whole (similarly as for dendrimers [11, 14, 15, 17]). As has been found in Refs. [8, 9], the related spectral dimension is given by \(d_s^{\mathrm {br}}=1+\log k/\log 2\). As we proceed to show, both aspects of the spectrum \(\{\lambda \}\) are reflected in the temporal growth of the entropy.

First, in Fig. 4b we show that, as for Vicsek fractals, the leading term \(-\ln [\bar{p}(t)]\) determines the temporal behavior of the entropy \(\bar{S}(t)\) for the \(NT_D\) graphs. We observe a scaling of the linear chains, i.e. \(\bar{S}(t)\sim (1/2)\ln (t)\). Increasing generation G leads to an appearance of lower and lower \(\lambda \)’s that get separated from the (continuous) spectrum of the linear chain. This leads to a change in the behavior of the term \({-}\ln [\bar{p}(t)]\) for longer times, see Fig. 4c. Thus, different parts of the spectrum \(\{\lambda \}\) translate their behavior to the time-dependent entropy \(\bar{S}(t)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mülken, O., Heinzelmann, S. & Dolgushev, M. Information Dimension of Stochastic Processes on Networks: Relating Entropy Production to Spectral Properties. J Stat Phys 167, 1233–1243 (2017). https://doi.org/10.1007/s10955-017-1785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1785-z

Keywords

Navigation