Skip to main content
Log in

Soft Communities in Similarity Space

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The \(\mathbb {S}^1\) model has been central in the development of the field of network geometry. It places nodes in a similarity space and connects them with a likelihood depending on an effective distance which combines similarity and popularity dimensions, with popularity directly related to the degrees of the nodes. The \(\mathbb {S}^1\) model has been mainly studied in its homogeneous regime, in which angular coordinates are independently and uniformly scattered on the circle. We now investigate if the model can generate networks with targeted topological features and soft communities, that is, inhomogeneous angular distributions. To that end, hidden degrees must depend on angular coordinates, and we propose a method to estimate them. We conclude that the model can be topologically invariant with respect to the soft-community structure. Our results expand the scope of the model beyond the independent hidden variables limit and can have an important impact in the embedding of real-world networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The original model defined in [4] is in fact more general, allowing for any connection probability \(p_{ij}\) as long as it depends on the argument \(d_{ij}/(\kappa _i \kappa _j)^{1/D}\), where the space is the D-dimensional sphere and \(d_{ij}\) the geodesic distance on the sphere. The particular functional form in Eq. (1) allows us to interpret the network as a set of non-interacting fermions (the links) embedded in the hyperbolic plane, with the hyperbolic length of a link playing the role of its energy and \(\beta \) playing the role of the inverse of the bath temperature [5].

  2. The ordering of the target degrees might not be necessary in a more general situation where, for instance, hidden degrees are not correlated with angles.

References

  1. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  2. Dorogovtsev, S.N., Mendes, J.F.F.: Accelerated Growth of Networks. Handbook of Graphs and Networks. Wiley-VCH, Berlin (2003)

    Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Serrano, M.Á., Krioukov, D., Boguñá, M.: Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100, 078701 (2008)

    Article  ADS  Google Scholar 

  5. Krioukov, D., Papadopoulos, F., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 80, 035101 (2009)

    Article  ADS  Google Scholar 

  6. Boguñá, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Nat. Commun. 1, 62 (2010)

    Article  ADS  Google Scholar 

  7. Serrano, M.Á., Boguñá, M., Sagués, F.: Uncovering the hidden geometry behind metabolic networks. Mol. BioSyst. 8, 843 (2012)

    Article  Google Scholar 

  8. García-Pérez, G., Boguñá, M., Allard, A., Serrano, M.Á.: The hidden hyperbolic geometry of international trade: World Trade Atlas 1870–2013. Sci. Rep. 6, 33441 (2016)

    Article  ADS  Google Scholar 

  9. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  ADS  Google Scholar 

  10. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101, 2658 (2004)

    Article  ADS  Google Scholar 

  11. Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10(5), 053039 (2008)

    Article  ADS  Google Scholar 

  12. Zuev, K., Boguñá, M., Bianconi, G., Krioukov, D.: Emergence of soft communities from geometric preferential attachment. Sci. Rep. 5, 9421 (2015)

    Article  ADS  Google Scholar 

  13. Papadopoulos, F., Kitsak, M., Serrano, M.Á., Boguñá, M., Krioukov, D.: Popularity versus similarity in growing networks. Nature 489(7417), 537 (2012)

    Article  ADS  Google Scholar 

  14. Muscoloni, A., Cannistraci, C.V.: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate realistic complex networks with communities. New J. Phys. 20, 052002 (2018)

    Article  ADS  Google Scholar 

  15. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gulyás, A., Bíró, J.J., Kőrösi, A., Rétvári, G., Krioukov, D.: Navigable networks as Nash equilibria of navigation games. Nat. Commun. 6, 7651 (2015)

    Article  ADS  Google Scholar 

  17. García-Pérez, G., Boguñá, M., Serrano, M.A.: Multiscale unfolding of real networks by geometric renormalization. Nat. Phys. 14, 583–589 (2018)

    Article  Google Scholar 

  18. Allard, A., Serrano, M.Á., García-Pérez, G., Boguñá, M.: The geometric nature of weights in real complex networks. Nat. Commun. 8, 14103 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from a James S. McDonnell Foundation Scholar Award in Complex Systems; the ICREA Academia prize, funded by the Generalitat de Catalunya; Ministerio de Economía y Competitividad of Spain Projects No. FIS2013-47282-C2-1-P and no. FIS2016-76830-C2-2-P (AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ángeles Serrano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Pérez, G., Serrano, M.Á. & Boguñá, M. Soft Communities in Similarity Space. J Stat Phys 173, 775–782 (2018). https://doi.org/10.1007/s10955-018-2084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2084-z

Keywords

Navigation