Skip to main content
Log in

Triangle-Well and Ramp Interactions in One-Dimensional Fluids: A Fully Analytic Exact Solution

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The exact statistical-mechanical solution for the equilibrium properties, both thermodynamic and structural, of one-dimensional fluids of particles interacting via the triangle-well and the ramp potentials is worked out. In contrast to previous studies, where the radial distribution function g(r) was obtained numerically from the structure factor by Fourier inversion, we provide a fully analytic representation of g(r) up to any desired distance. The solution is employed to perform an extensive study of the equation of state, the excess internal energy per particle, the residual multiparticle entropy, the structure factor, the radial distribution function, and the direct correlation function. In addition, scatter plots of the bridge function versus the indirect correlation function are used to gauge the reliability of the hypernetted-chain, Percus–Yevick, and Martynov–Sarkisov closures. Finally, the Fisher–Widom and Widom lines are obtained in the case of the triangle-well model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abate, J., Whitt, W.: The Fourier-series method for inverting transforms of probability distributions. Queueing Syst. 10, 5–88 (1992). https://doi.org/10.1007/BF01158520

    Article  MathSciNet  MATH  Google Scholar 

  2. Archer, A.J., Chacko, B., Evans, R.: The standard mean-field treatment of inter-particle attraction in classical DFT is better than one might expect. J. Chem. Phys. 147, 034501 (2017). https://doi.org/10.1063/1.4993175

    Article  ADS  Google Scholar 

  3. Archer, A.J., Evans, R.: Relationship between local molecular field theory and density functional theory for non-uniform liquids. J. Chem. Phys. 138, 014502 (2013). https://doi.org/10.1063/1.4771976

    Article  ADS  Google Scholar 

  4. Asakura, S., Oosawa, F.: On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954). https://doi.org/10.1063/1.1740347

    Article  ADS  Google Scholar 

  5. Asakura, S., Oosawa, F.: Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 33, 183–192 (1958). https://doi.org/10.1002/pol.1958.1203312618

    Article  ADS  Google Scholar 

  6. Baranyai, A., Evans, D.J.: Direct entropy calculation from computer simulation of liquids. Phys. Rev. A 40, 3817–3822 (1989). https://doi.org/10.1103/PhysRevA.40.3817

    Article  ADS  Google Scholar 

  7. Baxter, R.J.: Percus-Yevick equation for hard spheres with surface adhesion. J. Chem. Phys. 49, 2770–2774 (1968). https://doi.org/10.1063/1.1670482

    Article  ADS  Google Scholar 

  8. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Dover, New York (2008)

    MATH  Google Scholar 

  9. Ben-Naim, A., Santos, A.: Local and global properties of mixtures in one-dimensional systems. II. Exact results for the Kirkwood–Buff integrals. J. Chem. Phys 131, 164512 (2009). https://doi.org/10.1063/1.3256234

    Article  ADS  Google Scholar 

  10. Bishop, M.: Virial coefficients for one-dimensional hard rods. Am. J. Phys. 51, 1151–1152 (1983). https://doi.org/10.1119/1.13113

    Article  ADS  Google Scholar 

  11. Bishop, M.: WCA perturbation theory for one-dimensional Lennard-Jones fluids. Am. J. Phys. 52, 158–161 (1984). https://doi.org/10.1119/1.13728

    Article  ADS  Google Scholar 

  12. Bishop, M.: A kinetic theory derivation of the second and third virial coefficients of rigid rods, disks, and spheres. Am. J. Phys. 57, 469–471 (1989). https://doi.org/10.1119/1.16005

    Article  ADS  Google Scholar 

  13. Bishop, M., Berne, B.J.: Molecular dynamics of one-dimensional hard rods. J. Chem. Phys. 60, 893–897 (1974). https://doi.org/10.1063/1.1681165

    Article  ADS  Google Scholar 

  14. Bishop, M., Boonstra, M.A.: Comparison between the convergence of perturbation expansions in one-dimensional square and triangle-well fluids. J. Chem. Phys. 79, 1092–1093 (1983). https://doi.org/10.1063/1.445837

    Article  ADS  Google Scholar 

  15. Bishop, M., Boonstra, M.A.: Exact partition functions for some one-dimensional models via the isobaric ensemble. Am. J. Phys. 51, 564–566 (1983). https://doi.org/10.1119/1.13204

    Article  ADS  Google Scholar 

  16. Bishop, M., Boonstra, M.A.: A geometrical derivation of the second and third virial coefficients of rigid rods, disks, and spheres. Am. J. Phys. 51, 653–654 (1983). https://doi.org/10.1119/1.13197

    Article  ADS  Google Scholar 

  17. Bishop, M., Boonstra, M.A.: The influence of the well width on the convergence of perturbation theory for one-dimensional square-well fluids. J. Chem. Phys. 79, 528–529 (1983). https://doi.org/10.1063/1.445509

    Article  ADS  Google Scholar 

  18. Bishop, M., Swamy, K.N.: Pertubation theory of one-dimensional triangle- and square-well fluids. J. Chem. Phys. 85, 3992–3994 (1986). https://doi.org/10.1063/1.450921

    Article  ADS  Google Scholar 

  19. Boda, D., Nonner, W., Henderson, D., Eisenberg, B., Gillespie, D.: Volume exclusion in calcium selective channels. Biophys. J. 94, 3486–3496 (2008). https://doi.org/10.1529/biophysj.107.122796

    Article  ADS  Google Scholar 

  20. Borzi, C., Ord, G., Percus, J.K.: The direct correlation function of a one-dimensional Ising model. J. Stat. Phys. 46, 51–66 (1987). https://doi.org/10.1007/BF01010330

    Article  ADS  MathSciNet  Google Scholar 

  21. Brader, J.M., Evans, R.: An exactly solvable model for a colloid-polymer mixture in one-dimension. Phys. A 306, 287–300 (2002). https://doi.org/10.1016/S0378-4371(02)00506-X

    Article  MATH  Google Scholar 

  22. Brown, W.E.: The Fisher-Widom line for a hard core attractive Yukawa fluid. Mol. Phys. 88, 579–584 (1996). https://doi.org/10.1080/00268979650026541

    Article  ADS  Google Scholar 

  23. Buldyrev, S.B., Malescio, G., Angell, C.A., Giovanbattista, N., Prestipino, S., Saija, F., Stanley, H.E., Xu, L.: Unusual phase behavior of one-component systems with two-scale isotropic interactions. J. Phys. 21, 504106 (2009). https://doi.org/10.1088/0953-8984/21/50/504106

    Google Scholar 

  24. Cherney, L.T., Petrov, A.P., Krylov, S.N.: One-dimensional approach to study kinetics of reversible binding of protein on capillary walls. Anal. Chem. 87, 1219–1225 (2015). https://doi.org/10.1021/ac503880j

    Article  Google Scholar 

  25. Dijkstra, M., Evans, R.: A simulation study of the decay of the pair correlation function in simple fluids. J. Chem. Phys 112, 1449–1456 (2000). https://doi.org/10.1063/1.480598

    Article  ADS  Google Scholar 

  26. Evans, R., Henderson, J.R., Hoyle, D.C., Parry, A.O., Sabeur, Z.A.: Asymptotic decay of liquid structure: oscillatory liquid-vapour density profiles and the Fisher-Widom line. Mol. Phys. 80, 755–775 (1993). https://doi.org/10.1080/00268979300102621

    Article  ADS  Google Scholar 

  27. Fantoni, R.: Non-existence of a phase transition for penetrable square wells in one dimension. J. Stat. Mech. p. P07030 (2010). https://doi.org/10.1088/1742-5468/2010/07/P07030

  28. Fantoni, R.: Exact results for one dimensional fluids through functional integration. J. Stat. Phys. 163, 1247–1267 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Fantoni, R.: One-dimensional fluids with positive potentials. J. Stat. Phys. 166, 1334–1342 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Fantoni, R., Giacometti, A., Malijevský, A., Santos, A.: A numerical test of a high-penetrability approximation for the one-dimensional penetrable-square-well model. J. Chem. Phys. 133, 024101 (2010)

    Article  ADS  Google Scholar 

  31. Fantoni, R., Santos, A.: One-dimensional fluids with second nearest-neighbor interactions. J. Stat. Phys. 169, 1171–1201 (2017). https://doi.org/10.1007/s10955-017-1908-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Fisher, M.E., Widom, B.: Decay of correlations in linear systems. J. Chem. Phys. 50, 3756–3772 (1969). https://doi.org/10.1063/1.1671624

    Article  ADS  Google Scholar 

  33. Giaquinta, P.V.: Entropy and ordering of hard rods in one dimension. Entropy 10, 248–260 (2008). https://doi.org/10.3390/e10030248

    Article  ADS  Google Scholar 

  34. Giaquinta, P.V., Giunta, G.: About entropy and correlations in a fluid of hard spheres. Phys. A 187, 145–158 (1992). https://doi.org/10.1016/0378-4371(92)90415-M

    Article  Google Scholar 

  35. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids, 3rd edn. Academic Press, London (2006)

    MATH  Google Scholar 

  36. Harnett, J., Bishop, M.: Monte Carlo simulations of one dimensional hard particle systems. Comput. Educ. J. 18, 73–78 (2008)

    Google Scholar 

  37. Herzfeld, K.F., Goeppert-Mayer, M.: On the states of aggregation. J. Chem. Phys. 2, 38–44 (1934). https://doi.org/10.1063/1.1749355

    Article  ADS  Google Scholar 

  38. Heying, M., Corti, D.S.: The one-dimensional fully non-additive binary hard rod mixture: exact thermophysical properties. Fluid Phase Equil. 220, 85–103 (2004). https://doi.org/10.1016/j.fluid.2004.02.018

    Article  Google Scholar 

  39. Huang, K.: Statistical Mechanics. Wiley, New York (1963)

    Google Scholar 

  40. Katsura, S., Tago, Y.: Radial distribution function and the direct correlation function for one-dimensional gas with square-well potential. J. Chem. Phys. 48, 4246–4251 (1968). https://doi.org/10.1063/1.1669764

    Article  ADS  Google Scholar 

  41. Kikuchi, R.: Theory of one-dimensional fluid binary mixtures. J. Chem. Phys. 23, 2327–2332 (1955). https://doi.org/10.1063/1.1741874

    Article  ADS  Google Scholar 

  42. Korteweg, D.T.: On van der Waals’s isothermal equation. Nature 45, 152–154 (1891). https://doi.org/10.1038/045277a0

    Article  ADS  MATH  Google Scholar 

  43. Kyakuno, H., Matsuda, K., Yahiro, H., Inami, Y., Fukuoka, T., Miyata, Y., Yanagi, K., Maniwa, Y., Kataura, H., Saito, T., Yumura, M., Iijima, S.: Confined water inside single-walled carbon nanotubes: global phase diagram and effect of finite length. J. Chem. Phys. 134, 244,501 (2011). https://doi.org/10.1063/1.3593064

    Article  Google Scholar 

  44. Lebowitz, J.L., Percus, J.K., Zucker, I.J.: Radial distribution functions in crystals and fluids. Bull. Am. Phys. Soc. 7, 415–415 (1962)

    Google Scholar 

  45. Lebowitz, J.L., Zomick, D.: Mixtures of hard spheres with nonadditive diameters: some exact results and solution of PY equation. J. Chem. Phys. 54, 3335–3346 (1971). https://doi.org/10.1063/1.1675348

    Article  ADS  Google Scholar 

  46. Lei, Z., Krauth, W.: Mixing and perfect sampling in one-dimensional particle systems. EPL 124, 20003 (2018). https://doi.org/10.1209/0295-5075/124/20003

    Article  ADS  Google Scholar 

  47. Lomba, E., Almarza, N.G., Martín, C., McBride, C.: Phase behavior of attractive and repulsive ramp fluids: integral equation and computer simulation studies. J. Chem. Phys. 126, 244,510 (2007). https://doi.org/10.1063/1.2748043

    Article  Google Scholar 

  48. López de Haro, M., Rodríguez-Rivas, A., Yuste, S.B., Santos, A.: Structural properties of the Jagla fluid. Phys. Rev. E 98, 012,138 (2018). https://doi.org/10.1103/PhysRevE.98.012138

    Article  Google Scholar 

  49. Rayleigh, L.: On the virial of a system of hard colliding bodies. Nature 45, 80–82 (1891). https://doi.org/10.1038/045080a0

    Article  ADS  MATH  Google Scholar 

  50. Luo, J., Xu, L., Angell, C.A., Stanley, H.E., Buldyrev, S.V.: Physics of the Jagla model as the liquid-liquid coexistence line slope varies. J. Chem. Phys. 142, 224,501 (2015). https://doi.org/10.1063/1.4921559

    Article  Google Scholar 

  51. Majumder, M., Chopra, N., Hinds, B.J.: Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5, 3867–3877 (2011). https://doi.org/10.1021/nn200222g

    Article  Google Scholar 

  52. Martynov, G.A., Sarkisov, G.N.: Exact equations and the theory of liquids. Mol. Phys. 49, 1495–1504 (1983). https://doi.org/10.1080/00268978300102111

    Article  ADS  Google Scholar 

  53. Mattis, D.C. (ed.): The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  54. Montero, A.M.: Correlation functions and thermophysical properties of one-dimensional liquids. arXiv:1710.01118 (2017)

  55. Montero, A.M., Santos, A.: Radial Distribution Function for One-Dimensional Triangle Well and Ramp Fluids, Wolfram Demonstrations Project (2017). http://demonstrations.wolfram.com/RadialDistributionFunctionForOneDimensionalTriangleWellAndRa/

  56. Morita, T.: Theory of classical fluids: Hyper-netted chain approximation, I: formulation for a one-component system. Prog. Theor. Phys. 20, 920–938 (1958). https://doi.org/10.1143/PTP.20.920

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Nagamiya, T.: Statistical mechanics of one-dimensional substances I. Proc. Phys. Math. Soc. Jpn. 22, 705–720 (1940). https://doi.org/10.11429/ppmsj1919.22.8-9_705

    MathSciNet  MATH  Google Scholar 

  58. Nagamiya, T.: Statistical mechanics of one-dimensional substances II. Proc. Phys.- Math. Soc. Jpn. 22, 1034–1047 (1940). https://doi.org/10.11429/ppmsj1919.22.12_1034

    MathSciNet  MATH  Google Scholar 

  59. Nettleton, R.E., Green, M.S.: Expression in terms of molecular distribution functions for the entropy density in an infinite system. J. Chem. Phys. 29, 1365–1370 (1958). https://doi.org/10.1063/1.1744724

    Article  ADS  Google Scholar 

  60. Percus, J.K.: Equilibrium state of a classical fluid of hard rods in an external field. J. Stat. Phys. 15, 505–511 (1976). https://doi.org/10.1007/BF01020803

    Article  ADS  MathSciNet  Google Scholar 

  61. Percus, J.K.: One-dimensional classical fluid with nearest-neighbor interaction in arbitrary external field. J. Stat. Phys. 28, 67–81 (1982). https://doi.org/10.1007/BF01011623

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Percus, J.K., Yevick, G.J.: Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110, 1–13 (1958). https://doi.org/10.1103/PhysRev.110.1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Pieprzyk, S., Brańka, A.C., Heyes, D.M.: Representation of the direct correlation function of the hard-sphere fluid. Phys. Rev. E 95, 062,104 (2017). https://doi.org/10.1103/PhysRevE.95.062104

    Article  Google Scholar 

  64. Raju, M., Banuti, D.T., Ma, P.C., Ihme, M.: Widom lines in binary mixtures of supercritical fluids. Sci. Rep. 7, 3027 (2017). https://doi.org/10.1038/s41598-017-03334-3

    Article  ADS  Google Scholar 

  65. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  66. Ruppeiner, G., Dyjack, N., McAloon, A., Stoops, J.: Solid-like features in dense vapors near the fluid critical point. J. Chem. Phys. 146, 224501 (2017). https://doi.org/10.1063/1.4984915

    Article  ADS  Google Scholar 

  67. Rybicki, G.B.: Exact statistical mechanics of a one-dimensional self-gravitating system. Astrophys. Space Sci. 14, 56–72 (1971). https://doi.org/10.1007/BF00649195

    Article  ADS  Google Scholar 

  68. Salsburg, Z.W., Zwanzig, R.W., Kirkwood, J.G.: Molecular distribution functions in a one-dimensional fluid. J. Chem. Phys. 21, 1098–1107 (1953). https://doi.org/10.1063/1.1699116

    Article  ADS  Google Scholar 

  69. Santos, A.: Exact bulk correlation functions in one-dimensional nonadditive hard-core mixtures. Phys. Rev. E 76, 062201 (2007). https://doi.org/10.1103/PhysRevE.76.062201

    Article  ADS  Google Scholar 

  70. Santos, A.: Radial Distribution Function for Sticky Hard Rods, Wolfram Demonstrations Project (2012). http://demonstrations.wolfram.com/RadialDistributionFunctionForStickyHardRods/

  71. Santos, A.: Playing with marbles: Structural and thermodynamic properties of hard-sphere systems. In: Cichocki, B., Napiórkowski, M., Piasecki, J. (eds.) 5th Warsaw School of Statistical Physics. Warsaw University Press, Warsaw (2014). arXiv:1310.5578

    Google Scholar 

  72. Santos, A.: Radial Distribution Function for One-Dimensional Square-Well and Square-Shoulder Fluids, Wolfram Demonstrations Project (2015). http://demonstrations.wolfram.com/RadialDistributionFunctionForOneDimensionalSquareWellAndSqua/

  73. Santos, A.: Radial Distribution Functions for Nonadditive Hard-Rod Mixtures, Wolfram Demonstrations Project, (2015). http://demonstrations.wolfram.com/RadialDistributionFunctionsForNonadditiveHardRodMixtures/

  74. Santos, A.: A Concise Course on the Theory of Classical Liquids. Basics and Selected Topics, Lecture Notes in Physics, vol. 923. Springer, New York (2016)

  75. Santos, A., Fantoni, R., Giacometti, A.: Penetrable square-well fluids: exact results in one dimension. Phys. Rev. E 77, 051206 (2008)

    Article  ADS  Google Scholar 

  76. Santos, A., Saija, F., Giaquinta, P.V.: Residual multiparticle entropy for a fractal fluid of hard spheres. Entropy 20, 544 (2018). https://doi.org/10.3390/e20070544

    Article  ADS  Google Scholar 

  77. Sarkanych, P., Holovatch, Y., Kenna, R.: Classical phase transitions in a one-dimensional short-range spin model. J. Phys. A 51, 505001 (2018). https://doi.org/10.1088/1751-8121/aaea02

    Article  MathSciNet  MATH  Google Scholar 

  78. Schmidt, M.: Fundamental measure density functional theory for nonadditive hard-core mixtures: the one-dimensional case. Phys. Rev. E 76, 031202 (2007). https://doi.org/10.1103/PhysRevE.76.031202

    Article  ADS  Google Scholar 

  79. Solana, J.R.: Perturbation Theories for the Thermodynamic Properties of Fluids and Solids. CRC Press, Boca Raton (2013)

    Book  MATH  Google Scholar 

  80. Takahasi, H.: Eine einfache methode zur behandlung der statistischen mechanik eindimensionaler substanzen. Proc. Phys. Math. Soc. Jpn. 24, 60–62 (1942). https://doi.org/10.11429/ppmsj1919.24.0_60

    MathSciNet  Google Scholar 

  81. Tarazona, P., Chacón, E., Velasco, E.: The Fisher-Widom line for systems with low melting temperature. Mol. Phys. 101, 1595–1603 (2003). https://doi.org/10.1080/0026897031000068550

    Article  ADS  Google Scholar 

  82. Tonks, L.: The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955–963 (1936). https://doi.org/10.1103/PhysRev.50.955

    Article  ADS  MATH  Google Scholar 

  83. van Hove, L.: Sur l’intégrale de configuration pour les systèmes de particules à une dimension. Physica 16, 137–143 (1950). https://doi.org/10.1016/0031-8914(50)90072-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. van Leeuwen, J.M.J., Groeneveld, J., de Boer, J.: New method for the calculation of the pair correlation function. Physica 25, 792–808 (1959). https://doi.org/10.1016/0031-8914(59)90004-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Vega, C., Rull, L.F., Lago, S.: Location of the Fisher-Widom line for systems interacting through short-ranged potentials. Phys. Rev. E 51, 3146–3155 (1995). https://doi.org/10.1103/PhysRevE.51.3146

    Article  ADS  Google Scholar 

  86. Vrij, A.: Polymers at interfaces and the interactions in colloidal dispersions. Pure Appl. Chem. 48, 471–483 (1976). https://doi.org/10.1351/pac197648040471

    Article  Google Scholar 

  87. Škrbić, T., Badasyan, A., Hoang, T.X., Podgornik, R., Giacometti, A.: From polymers to proteins: the effect of side chains and broken symmetry on the formation of secondary structures within a Wang-Landau approach. Soft Matter 12, 4783–4793 (2016). https://doi.org/10.1039/c6sm00542j

    Article  ADS  Google Scholar 

  88. Xu, L., Buldyrev, S.V., Angell, C.A., Stanley, H.E.: Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids. Phys. Rev. E 74, 031108 (2006). https://doi.org/10.1103/PhysRevE.74.031108

    Article  ADS  Google Scholar 

  89. Xu, L., Ehrenberg, I., Buldyrev, S.V., Stanley, H.E.: Relationship between the liquid-liquid phase transition and dynamic behaviour in the Jagla model. J. Phys. 18, S2239–S2246 (2006). https://doi.org/10.1088/0953-8984/18/36/S01

    Google Scholar 

  90. Xu, L., Kumar, P., Buldyrev, S.V., Chen, S.H., Poole, P.H., Sciortino, F., Stanley, H.E.: Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proc. Natl. Acad. Sci. USA 102, 16558–16562 (2005). https://doi.org/10.1073/pnas.0507870102

    Article  ADS  Google Scholar 

  91. Yuste, S.B., Santos, A.: Radial distribution function for sticky hard-core fluids. J. Stat. Phys. 72, 703–720 (1993). https://doi.org/10.1007/BF01048029

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

A.M.M. is grateful to the Ministerio de Educación, Cultura y Deporte (Spain) for a Beca-Colaboración during the academic year 2016–2017, which gave rise to this work. The research of A.S. has been supported by the Spanish Agencia Estatal de Investigación through Grant No. FIS2016-76359-P and the Junta de Extremadura (Spain) through Grant No. GR18079, both partially financed by Fondo Europeo de Desarrollo Regional funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Santos.

Additional information

Communicated by Eric A A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A: Inverse Laplace Transform of \(F_{\ell \ell _1}(s)\)

Let us start by considering the following mathematical identity,

$$\begin{aligned} 1=x^{\ell _1}\sum _{j=0}^{\ell -1}\left( {\begin{array}{c}\ell _1+j-1\\ \ell _1-1\end{array}}\right) (1-x)^{j}+(1-x)^\ell \sum _{j_1=0}^{\ell _1-1}\left( {\begin{array}{c}\ell +j_1-1\\ \ell -1\end{array}}\right) x^{j_1}, \quad \ell ,\ell _1\ge 1, \end{aligned}$$
(A.1)

which can be proved by induction. Dividing both sides by \((1-x)^\ell x^{\ell _1}\), Eq. (A.1) becomes

$$\begin{aligned} \frac{1}{(1-x)^\ell x^{\ell _1}}=\sum _{j=1}^{\ell }\frac{\left( {\begin{array}{c}\ell +\ell _1-j-1\\ \ell _1-1\end{array}}\right) }{(1-x)^{j}}+\sum _{j_1=1}^{\ell _1} \frac{\left( {\begin{array}{c}\ell +\ell _1-j_1-1\\ \ell -1\end{array}}\right) }{x^{j_1}}. \end{aligned}$$
(A.2)

Next, the change of variable \(s=-a_\beta x-\beta p \) yields

$$\begin{aligned} F_{\ell \ell _1}(s)= \sum _{j=1}^{\ell }\frac{\left( {\begin{array}{c}\ell +\ell _1-j-1\\ \ell _1-1\end{array}}\right) }{a_\beta ^{\ell +\ell _1-j}}\frac{(-1)^{\ell _1}}{(a_\beta +\beta p+s)^{j}}+\sum _{j_1=1}^{\ell _1}\frac{\left( {\begin{array}{c}\ell +\ell _1-j_1-1\\ \ell -1\end{array}}\right) }{a_\beta ^{\ell +\ell _1-j_1}}\frac{(-1)^{\ell _1-j_1}}{(\beta p+s)^{j_1}}, \end{aligned}$$
(A.3)

where \(F_{\ell \ell _1}(s)\) is defined in Eq. (3.10). Making use of the laplace relation \(\mathscr {L}^{-1}\{(a+s)^{-\ell }\}=\varTheta (r) \mathrm {e}^{-a r}r^{\ell -1}/(\ell -1)!\), where \(\varTheta (\cdots )\) is the Heaviside step function, the inverse Laplace transform of \(F_{\ell \ell _1}(s)\) is

$$\begin{aligned} f_{\ell \ell _1}(r)\equiv&\mathscr {L}^{-1}\left\{ F_{\ell \ell _1}(s)\right\} \nonumber \\ =&\frac{(-1)^{\ell _1}}{a_\beta ^{\ell +\ell _1}}\mathrm {e}^{-\beta pr}\varTheta (r)\left[ \mathrm {e}^{-a_\beta r} \sum _{j=1}^{\ell }\frac{\left( {\begin{array}{c}\ell +\ell _1-j-1\\ \ell _1-1\end{array}}\right) a_\beta ^{j}}{(j-1)!}r^{j-1}+\sum _{j_1=1}^{\ell _1}\frac{\left( {\begin{array}{c}\ell +\ell _1-j_1-1\\ \ell -1\end{array}}\right) (-a_\beta )^{j_1}}{(j_1-1)!}r^{j_1-1} \right] . \end{aligned}$$
(A.4)

In the special case \(\ell _1=0\), one simply has

$$\begin{aligned} f_{\ell 0}(r)=\mathrm {e}^{-(a_\beta +\beta p)r} \frac{r^{\ell -1}}{(\ell -1)!}\varTheta (r). \end{aligned}$$
(A.5)

B: Widom Line in the Low-Temperature Limit

The Widom line is determined by the two conditions

$$\begin{aligned} \varOmega _\beta (-\kappa +\beta p)=\varOmega _\beta (\beta p),\quad \varOmega '_\beta (-\kappa +\beta p)=\varOmega '_\beta (\beta p). \end{aligned}$$
(B.1)

The first equality is the condition for \(s=-\kappa \) to be a pole of \(\mathscr {G}(s)\), in agreement with Eq. (2.5). The second equality is the extremum condition \(\left( \partial \kappa /\partial {\beta p}\right) _{\beta }=0\).

From an inspection of Eqs. (3.1a) and (3.1b) one can check that, in the low-temperature limit (\(\beta \epsilon \gg 1\)), the solutions to Eq. (B.1) scale as

$$\begin{aligned} \beta p \rightarrow \sqrt{x\frac{a_\beta }{X_\beta }},\quad \kappa \rightarrow y \beta p, \end{aligned}$$
(B.2)

where the parameters x and y are pure numbers to be determined. Insertion of the scaling laws (B.2) yields

$$\begin{aligned} \lim _{\beta \epsilon \rightarrow \infty } \beta p\left[ \varOmega _\beta (-\kappa +\beta p)-\varOmega _\beta (\beta p)\right] =y\left( x-\frac{1}{y-1}\right) , \end{aligned}$$
(B.3a)
$$\begin{aligned} \lim _{\beta \epsilon \rightarrow \infty } (\beta p)^2\left[ \varOmega _\beta '(-\kappa +\beta p)-\varOmega _\beta '(\beta p)\right] =1-\frac{1}{(y-1)^2}. \end{aligned}$$
(B.3b)

Then, the conditions (B.1) imply \(x=1\), \(y=2\).

Next, inserting \(\beta p\rightarrow \sqrt{a_\beta /X_\beta }\) into Eq. (3.3b) and taking the limit \(\beta \epsilon \rightarrow \infty \), one obtains \(n^*\rightarrow \frac{1}{2}\). It is worth noticing that in the case of a one-dimensional square-well fluid of range \(\lambda \), the low-temperature limit of the Widom line is described by \(\beta p \rightarrow \sqrt{2/(\lambda ^2-1)X_\beta }\), \(\kappa \rightarrow 2 \beta p\), and \(n^*\rightarrow 1/(\lambda +1)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero, A.M., Santos, A. Triangle-Well and Ramp Interactions in One-Dimensional Fluids: A Fully Analytic Exact Solution. J Stat Phys 175, 269–288 (2019). https://doi.org/10.1007/s10955-019-02255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02255-x

Keywords

Navigation