Skip to main content
Log in

Lyapunov Exponents for Some Isotropic Random Matrix Ensembles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A random matrix with rows distributed as a function of their length is said to be isotropic. When these distributions are Gaussian, beta type I, or beta type II, previous work has, from the viewpoint of integral geometry, obtained the explicit form of the distribution of the determinant. We use these result to evaluate the sum of the Lyapunov spectrum of the corresponding random matrix product, and we further give explicit expressions for the largest Lyapunov exponent. Generalisations to the case of complex or quaternion entries are also given. For standard Gaussian matrices X, the full Lyapunov spectrum for products of random matrices \(I_N + {1 \over c} X\) is computed in terms of a generalised hypergeometric function in general, and in terms of a single single integral involving a modified Bessel function for the largest Lyapunov exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akemann, G., Burda, Z., Kieburg, M.: Universal distribution of Lyapunov exponents for products of Ginibre matrices. J. Phys. A 47, 395202 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bartlett, M.S.: The vector representation of a sample. Math. Proc. Camb. Philos. Soc. 30, 327–340 (1934)

    Article  ADS  Google Scholar 

  3. Bausch, J.: On the efficient calculation of a linear combination of chi-squared random variables with an application in counting string vacua. J. Phys. A 46, 505202 (2013)

    Article  MathSciNet  Google Scholar 

  4. Cohen, J.E., Newman, C.M.: The stability of large random matrices and their products. Ann. Prob. 12, 283–310 (1984)

    Article  MathSciNet  Google Scholar 

  5. Constantine, A.G.: Some noncentral distribution problems in multivariate analysis. Ann. Math. Stat. 34, 1270–1285 (1963)

    Article  Google Scholar 

  6. Constantine, A.G., Muirhead, R.J.: Asymptotic expansions for distributions of latent roots in multivariate analysis. J. Mult. Anal. 6, 369–391 (1976)

    Article  MathSciNet  Google Scholar 

  7. Cui, X., Zhang, Q.T.: Generic procedure for tightly bounding the capacity of MIMO correlated Rician fading channels. IEEE Trans. Commun. 53, 890–898 (2005)

    Article  Google Scholar 

  8. Díaz-García, J.A., Gutiérrez-Jáimez, R.: Random matrix theory and multivariate statistics. arXiv:0907.1064

  9. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  10. Forrester, P.J.: Lyapunov exponents for products of complex Gaussian random matrices. J. Stat. Phys. 151, 796–808 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Forrester, P.J.: Asymptotics of finite system Lyapunov exponents for some random matrix ensembles. J. Phys. A 48, 215205 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Forrester, P.J.: Matrix polar decomposition and generalisations of the Blaschke–Petkantschin formula in integral geometry. arXiv:1701.04505

  13. Forrester, P.J.: Comment on “Sum of squares of uniform random variables” by I. Weissman. Stat. Probab. Lett. 142, 118–122 (2018)

    Article  MathSciNet  Google Scholar 

  14. Forrester, P.J., Ipsen, J.R.: Selberg integral theory and Muttalib–Borodin ensembles. Adv. Appl. Math. 95, 152–176 (2018)

    Article  MathSciNet  Google Scholar 

  15. Forrester, P.J., Zhang, J.: Volumes and distributions for random unimodular complex and quaternion lattices. J. Number Theory (2018). https://doi.org/10.1016/j.jnt.2018.03.010

    Article  MathSciNet  MATH  Google Scholar 

  16. Ipsen, J.R.: Lyapunov exponents for products of rectangular real, complex and quaternionic Ginibre matrices. J. Phys. A 48, 155204 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kabluchko, Z., Temesvari, D., Thäle, C.: Expected intrinsic volumes and facet number of random beta-polytopes. arXiv:1707.02253

  18. Kabluchko, Z., Marynych, A., Temesvari, D., Thäle, C.: Cones generated by random points on half-spheres and convex hulls of Poisson point processes. arXiv:1801.08008

  19. Kargin, V.: On the largest Lyapunov exponent for products of Gaussian matrices. J. Stat. Phys. 157, 70–83 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. Mathai, A.M.: Random \(p\)-content of a \(p\)-parallelotope in Euclidean \(n\)-space. Adv. Appl. Probab. 31, 343–354 (1999)

    Article  MathSciNet  Google Scholar 

  21. Mathai, A.M.: An Introduction to Geometric Probability. Gordon and Breach Science Publishers, Amsterdam (1999)

    MATH  Google Scholar 

  22. Moghadasi, S.R.: Polar decomposition of the \(k\)-fold Lebesgue measure on \({\mathbb{R}}^n\). Bull. Aust. Math. Soc. 85, 315–324 (2012)

    Article  MathSciNet  Google Scholar 

  23. Muirhead, R.J.: Latent roots and matrix variates: a review of some asymptotic results. Ann. Stat. 6, 5–33 (1978)

    Article  MathSciNet  Google Scholar 

  24. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Book  Google Scholar 

  25. Newman, C.M.: The distribution of Lyapunov exponents: exact results for random matrices. Commun. Math. Phys. 103, 121–126 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  26. Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)

    MathSciNet  Google Scholar 

  27. Paris, R.B.: Exponentially small expansions of the confluent hypergeometric function. Appl. Math. Sci. 7, 6601–6609 (2013)

    MathSciNet  Google Scholar 

  28. Prékopa, A.: On random determinants I. Studia Sci. Math. Hung. 2, 125–132 (1967)

    MathSciNet  MATH  Google Scholar 

  29. Raghunathan, M.S.: A proof of Oseledec’s multiplicative ergodic theorem. Israel J. Math. 32, 356–362 (1979)

    Article  MathSciNet  Google Scholar 

  30. Rouault, A.: Asymptotic behavior of random determinants in the Laguerre, Gram and Jacobi ensembles. ALEA 3, 181–230 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Ruben, H.: The volume of an isotropic random parallelotope. J. Appl. Probab. 16, 84–94 (1979)

    Article  MathSciNet  Google Scholar 

  32. Sim, C.H.: Point processes with correlated gamma inter arrival times. Stat. Probab. Lett. 15, 135–141 (1992)

    Article  Google Scholar 

  33. Tsaig, Y., Donoho, D.L.: Breakdown of equivalence between the minimal \(L_1\)-norm solution and the sparsest solution. Signal Process. 86, 533–548 (2006)

    Article  Google Scholar 

  34. Weissman, I.: Sum of squares of uniform random variables. Stat. Probab. Lett. 129, 147–154 (2017)

    Article  MathSciNet  Google Scholar 

  35. Wikipedia, Noncentral chi-squared distribution. https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

  36. Zanon, N., Derrida, B.: Weak disorder expansion of Liapunov exponents in a degenerate case. J. Stat. Phys. 50, 509–528 (1988)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research project is part of the program of study supported by the ARC Centre of Excellence for Mathematical & Statistical Frontiers (ACEMS), and the Australian Research Council Discovery Project Grant DP170102028. The work of JZ was supported by a University of Melbourne Research Scholarship, and an ACEMS top-up scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Forrester.

Additional information

Communicated by Ivan Corwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forrester, P.J., Zhang, J. Lyapunov Exponents for Some Isotropic Random Matrix Ensembles. J Stat Phys 180, 558–575 (2020). https://doi.org/10.1007/s10955-019-02474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02474-2

Keywords

Navigation