Skip to main content
Log in

Polynomial Birth–Death Distribution Approximation in the Wasserstein Distance

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The polynomial birth–death distribution (abbreviated, PBD) on ℐ={0,1,2,…} or ℐ={0,1,2,…,m} for some finite m introduced in Brown and Xia (Ann. Probab. 29:1373–1403, 2001) is the equilibrium distribution of the birth–death process with birth rates {α i } and death rates {β i }, where α i ≥0 and β i ≥0 are polynomial functions of i∈ℐ. The family includes Poisson, negative binomial, binomial, and hypergeometric distributions. In this paper, we give probabilistic proofs of various Stein’s factors for the PBD approximation with α i =a and β i =i+bi(i−1) in terms of the Wasserstein distance. The paper complements the work of Brown and Xia (Ann. Probab. 29:1373–1403, 2001) and generalizes the work of Barbour and Xia (Bernoulli 12:943–954, 2006) where Poisson approximation (b=0) in the Wasserstein distance is investigated. As an application, we establish an upper bound for the Wasserstein distance between the PBD and Poisson binomial distribution and show that the PBD approximation to the Poisson binomial distribution is much more precise than the approximation by the Poisson or shifted Poisson distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbour, A.D.: Stein’s method and Poisson process convergence. J. Appl. Probab. 25, 175–184 (1988)

    Article  MathSciNet  Google Scholar 

  2. Barbour, A.D., Brown, T.C.: Stein’s method and point process approximation. Stoch. Process. Their Appl. 43, 9–31 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barbour, A.D., Hall, P.: On the rate of Poisson convergence. Math. Proc. Camb. Philos. Soc. 95, 473–480 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barbour, A.D., Xia, A.: On Stein’s factors for Poisson approximation in Wasserstein distance. Bernoulli 12, 943–954 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barbour, A.D., Chen, L.H.Y., Loh, W.: Compound Poisson approximation for nonnegative random variables using Stein’s method. Ann. Probab. 20, 1843–1866 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barbour, A.D., Holst, L., Janson, S.: Poisson Approximation. Oxford Univ. Press, London (1992)

    MATH  Google Scholar 

  7. Brown, T.C., Phillips, M.J.: Negative binomial approximation with Stein’s method. Methodol. Comput. Appl. Probab. 1, 407–421 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brown, T.C., Xia, A.: Stein’s method and birth–death processes. Ann. Probab. 29, 1373–1403 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Čekanavičius, V.: Asymptotic expansions in the exponent: a compound Poisson approach. Adv. Appl. Probab. 29, 374–387 (1997)

    Article  MATH  Google Scholar 

  10. Chen, L.H.Y.: Poisson approximation for dependent trials. Ann. Probab. 3, 534–545 (1975)

    Article  MATH  Google Scholar 

  11. Ehm, W.: Binomial approximation to the Poisson binomial distribution. Stat. Probab. Lett. 11, 7–16 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hodges, J.L., Le Cam, L.: The Poisson approximation to the Poisson binomial distribution. Ann. Math. Stat. 31, 737–740 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kallenberg, O.: Random Measures. Academic Press, San Diego (1983)

    Google Scholar 

  14. Kruopis, J.: Precision of approximations of the generalized binomial distribution by convolutions of Poisson measures. Lith. Math. J. 26, 37–49 (1986)

    Article  MATH  Google Scholar 

  15. Presman, E.L.: Approximation of binomial distributions by infinitely divisible ones. Theory Probab. Appl. 28, 393–403 (1983)

    Article  MathSciNet  Google Scholar 

  16. Prohorov, Yu.V.: Asymptotic behaviour of the binomial distribution. Usp. Mat. Nauk 8, 135–142 (1953). (In Russian)

    MathSciNet  Google Scholar 

  17. Shorack, G.R., Wellner, J.A.: Empirical Processes with Applications to Statistics. Wiley, New York (1986)

    Google Scholar 

  18. Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proc. Sixth Berkeley Symp. Math. Statist. Probab., vol. 2, pp. 583–602. Univ. California Press, Berkeley (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihua Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, A., Zhang, F. Polynomial Birth–Death Distribution Approximation in the Wasserstein Distance. J Theor Probab 22, 294–310 (2009). https://doi.org/10.1007/s10959-008-0207-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-008-0207-1

Keywords

Mathematics Subject Classification (2000)

Navigation