Skip to main content
Log in

Synthesis of random copolymer using Zig-Zag Naphthodithiophene for bulk Heterojunction polymer solar cell applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Synthesized a random copolymer here, namely P(zNDT-TPDBT), consisting of an electron-rich unit ‘zig-zag’ 4,9-bis-(2-ethylhexyloxy)naphtho[1,2-b:5,6-b’]dithiophene (zNDT) and different ratio of two-electron acceptor units of thieno[3,4-c]pyrrole-4,6-dione (TPD) and benzodiathiazole (BT) via Stille coupling polymerization. The photophysical, electrochemical, and photovoltaic properties of P(zNDT-TPDBT) were investigated. The differences in the photophysical property of P(zNDT-TPDBT) indicate (i) red-shifted and broadening absorption spectrum located at 509 nm in thin-film as compared to solution (λmax = 492 nm) (ii) the fluorescence spectrum shows dual emission bands at 545 nm and 608 nm in the longer wavelength in solution, however, relatively complete quenching fluorescence property was observed in blended film with PC71BM. The copolymer exhibited an optical bandgap of 2.03 eV, with a highest occupied molecular orbital (HOMO) level of −5.87 eV. The optimized structure for the copolymer was also determined through DFT calculation. The bulk-heterojunction (BHJ) polymer solar cell (PSC) with a device structure of ITO/PEDOT:PSS/P(zNDT-TPDBT):PC71BM/Al exhibited a promising efficiency of 2.4% with the short circuit current density (Jsc) of 5.7 mA cm−2, open-circuit voltage (Voc) of 0.91 V, and fill factor (FF) of 47%, without processing addictive. The clear correlations between film morphology and device efficiency were observed through atomic force microscopy technique.

A random copolymer, PzNDT-TPDBT, consisting of “zig-zag’ 4,9-bis-(2-ethylhexyloxy)naphtho[1,2-b:5,6-b’]dithiophene (zNDT) and different ratio of two electron acceptor units of thieno[3,4-c]pyrrole-4,6-dione (TPD) and benzodiathiazole (BT) has been synthesized via Stille coupling polymerization. The PCE of the device based on P(zNDT-TPDBT) combination with PC71BM showed the power conversion efficiency of (η) 2.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918

    CAS  PubMed  Google Scholar 

  2. Jiang JM, Yuan MC, Dinakaran K, Hariharan A, Wei KH (2013) Crystalline donor-acceptor conjugated polymers for bulk heterojunction photovoltaics. J Mater Chem A 1:4415–4422

    CAS  Google Scholar 

  3. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk Heterojunction polymer solar cells. Chem Rev 115:12666–12731

    CAS  PubMed  Google Scholar 

  4. Lu L, Kelly MA, Yu W, Yu L (2015) Status and prospects for ternary organic photovoltaics. Nat Photon 9:491–500

    CAS  Google Scholar 

  5. Chen HY, Hou JH, Zhang SQ, Liang Y, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649–653

    CAS  Google Scholar 

  6. Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk Heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138

    CAS  PubMed  Google Scholar 

  7. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    CAS  PubMed  Google Scholar 

  8. Noriega R, Rivnay J, Vandewal K, Koch FP, Stingelin N, Smith P, Toney MF, Salleo (2013) A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater 12:1038–1044

    CAS  PubMed  Google Scholar 

  9. Nakano M, Takimiya K (2017) Sodium sulfide-promoted Thiophene-annulations: powerful tools for elaborating organic semiconducting materials. Chem Mater 29:256–264

    CAS  Google Scholar 

  10. Chiou DY, Cao FY, Hsu JY, Tsai CE, Lai YY, Jeng US, Zhang J, Yan H, Suc CJ, Cheng YJ (2017) Synthesis and side-chain isomeric effect of 4,9−/5,10-dialkylated-β-angular-shaped naphthodithiophenes-based donor-acceptor copolymers for polymer solar cells and field-effect transistors. Polym Chem 8:2334–2345

    CAS  Google Scholar 

  11. Shinamura S, Osaka I, Miyazaki E, Nakao A, Yamagishi M, Takeya J, Takimiya K (2011) Linear- and angular-shaped Naphthodithiophenes: selective synthesis, properties, and application to organic field-effect transistors. J Am Chem Soc 133:5024–5035

    CAS  PubMed  Google Scholar 

  12. Niimi K, Shinamur S, Osaka I, Miyazaki E, Takimiya K (2011) Dianthra[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DATT): synthesis, characterization, and FET characteristics of new π-extended Heteroarene with eight fused aromatic rings. J Am Chem Soc 133:8732–8739

    CAS  PubMed  Google Scholar 

  13. Loser S, Miyauchi H, Hennek JW, Smith J, Huang C, Facchetti A, Marks TJA (2012) “Zig-Zag” naphthodithiophene core for increased efficiency in solution-processed small molecule solar cells. Chem Commun 48:8511–8513

    CAS  Google Scholar 

  14. Osaka I, Abe T, Shinamura S, Takimiya K (2011) Impact of isomeric structures on transistor performances in Naphthodithiophene semiconducting polymers. J Am Chem Soc 133:6852–6860

    CAS  PubMed  Google Scholar 

  15. Nakano M, Shinamura S, Houchin Y, Osaka I, Miyazaki E, Takimiya K (2012) Angular-shaped naphthodifurans, naphtho[1,2-b;5,6-b′]- and naphtho[2,1-b;6,5-b′]-difuran: are they isoelectronic with chrysene? Chem Commun 48:5671–5673

    CAS  Google Scholar 

  16. Osaka I, Abe T, Shinamura S, Miyazaki E, Takimiya K (2010) High-mobility semiconducting Naphthodithiophene copolymers. Am Chem Soc 132:5000–5001

    CAS  Google Scholar 

  17. Bagde SS, Park H, Tran VH, Lee SH (2019) A new 2D-naphtho[1,2-b:5,6-b’]dithiophene based donor small molecules for bulk-heterojunction organic solar cells. Dyes Pigments 163:30–39

    CAS  Google Scholar 

  18. Zhu XW, Lu K, Li H, Zhou RM, Wei ZX (2016) Naphthodithiophene-based donor materials for solution processed organic solar cells. Chin Chem Lett 27:1271–1276

    CAS  Google Scholar 

  19. Guo X, Xin H, Kim FS, Liyanage ADT, Jenekhe SA, Watson MD (2011) Thieno[3,4-c]pyrrole-4,6-dione-based donor-acceptor conjugated polymers for solar cells. Macromolecules 44:2269–2277

    Google Scholar 

  20. Wang HY, Gao J, Gu LJ, Wan JH, Wei W, Liu F (2013) Structural modification of thieno[3,4-c]pyrrole-4,6-dione: structure-property relationships and application in solution-processed small-molecule organic solar cells. J Mater Chem A 1:5875–5885

    CAS  Google Scholar 

  21. Liu S, Song X, Thomas S, Kan Z, Cruciani F, Laquai F, Bredas JL, Beaujug PM (2017) Thieno[3,4-c]Pyrrole-4,6-Dione-based polymer acceptors for high open-circuit voltage all-polymer solar cells. Adv Energy Mater 1602574:1–12

    Google Scholar 

  22. Yuan J, Ma W (2015) High efficiency all-polymer solar cells realized by the synergistic effect between the polymer side-chain structure and solvent additive. J Mater Chem A 3:7077–7085

    CAS  Google Scholar 

  23. Gao Y, Liu M, Zhang Y, Liu Z, Yang Y, Zhao L (2017) Recent Development on Narrow Bandgap Conjugated Polymers for Polymer Solar Cells. Polymers 9(39):1–42

    Google Scholar 

  24. Shi S, Jiang P, Yu S, Wang L, Wang X, Wang M, Wang H, Li Y, Li X (2013) Efficient polymer solar cells based on a broad bandgap D-A copolymer of “zigzag” naphthodithiophene and thieno[3,4-c]pyrrole-4,6-dione. J Mater Chem A 1:1540–1543

    CAS  Google Scholar 

  25. Shi S, Xie X, Qu R, Chen S, Wang L, Wang M, Wang H, Li X, Yu G (2013) Synthesis, characterization, and field-effect transistor performance of naphtho[1,2-b:5,6-b′]dithiophene-based donor-acceptor copolymers. RSC Adv 3:18944–18951

    CAS  Google Scholar 

  26. B. Gao, J. Meng (2015) Ternary blend bulk heterojunction polymer solar cells based on double donors and single acceptor with ultra wideband absorption, Mater Express 5(6):489–-496

  27. Wang H, Cheng P, Liu Y, Chen J, Zhan X, Hu W, Shuai Z, Lia Y, Zhua DA (2012) Conjugated polymer based on 5,5′-bibenzo[c][1,2,5]thiadiazole for high-performance solar cells. J Mater Chem 22:3432–3439

    CAS  Google Scholar 

  28. Zhong W, Liang J, Hu S, Jiang XF, Ying L, Huang F, Yang W, Cao Y (2016) Effect of Monofluoro substitution on the optoelectronic properties of Benzo[c][1,2,5]thiadiazole based organic semiconductors. Macromolecules 49:5806–5816

    CAS  Google Scholar 

  29. Shi S, Xie X, Jiang P, Chen S, Wang L, Wang M, Wang H, Li X, Yu G, Li Y (2013) Naphtho[1,2-b:5,6-b′]dithiophene-based donor-acceptor copolymer semiconductors for high-mobility field-effect transistors and efficient polymer solar cells. Macromolecules 46:3358–3366

    CAS  Google Scholar 

  30. Tamilavan V, Liu Y, Lee J, Jung YK, Son S, Jeonga J, Park SH (2018) Highly crystalline new benzodithiophene-benzothiadiazole copolymer for efficient ternary polymer solar cells with an energy conversion efficiency of over 10%. J Mater Chem C 6:4281–4289

    CAS  Google Scholar 

  31. Kang SH, Tabi GD, Lee J, Kim G, Noh YY, Yang C (2017) Chlorinated 2,1,3-Benzothiadiazole-based polymers for organic field-effect transistors. Macromolecules 50:4649–4657

    CAS  Google Scholar 

  32. Najari. A, Beaupre. S, Berrouard. P, Zou. Y, Pouliot. JR, Perusse. CL, Leclerc (2011) Synthesis and characterization of new Thieno[3,4-c]pyrrole-4,6-dione derivatives for photovoltaic applications. M. Adv Funct Mater 21: 718–728

  33. Tamilavan V, Lee J, Agneeswari R, Lee DY, Cho S, Jin Y, Park SH, Hyun MH (2015) Photocurrent enhancement of an efficient large band gap polymer incorporating benzodithiophene and weak electron accepting pyrrolo[3,4-c]pyrrole-1,3-dione derivatives via the insertion of a strong electron accepting thieno[3,4-b]thiophene unit. Polymer 80:95–103

    CAS  Google Scholar 

  34. Gao B, Meng J, Yin X, He Y, Que W (2016) Fluorine substituted thienyl-quinoxaline copolymer to reduce the HOMO level and increase open-circuit voltage for organic solar cells. Mater Express 6(1):19–27

    CAS  Google Scholar 

  35. Bathula C, Song CE, Badgujar S, Hong SJ, Park SY, Shin WS, Lee JC, Cho S, Ahn T, Moon SJ, Lee SK (2013) Naphtho[1,2-b:5,6-b′]dithiophene-based copolymers for applications to polymer solar cells. Polym Chem 4:2132–2139

    CAS  Google Scholar 

  36. Gao B, Meng J (2018) High-efficiency polymer solar cells by using co-solvents 1-chloronaphthalene and 1,8-octanedithiol as processing additives. Journal of Elec Materi 47(7):4016–4021

    CAS  Google Scholar 

  37. Bathula C, Badgujar S, Song CE, Kang IN, Cho S, Lee JC, Shin WS, Moon SJ, Lee SK (2014) Effect of backbone structures on photovoltaic properties in naphthodithiophene-based copolymers. J Polym Sci A 52:305–312

    CAS  Google Scholar 

  38. Zhang B, Xu J, Hu L, Chen G, Yang W (2015) Absorption-enhanced polymer solar cells based on broad band-gap poly(triphenylamine-alt-benzo[c][1,2,5]selenadiazole) derivative. Mater Lett 160:9–13

    CAS  Google Scholar 

  39. Fan Q, Liu Y, Xiao M, Su W, Gao H, Chen J, Tan H, Wang Y, Yang R, Zhu W (2015) Enhancing the photovoltaic properties of terpolymers containing benzo[1,2-b:4,5-b′]dithiophene, phenanthro[4,5-abc]phenazine and benzo[c][1,2,5]thiadiazole by changing the substituents. J Mater Chem C 3:6240–6248

    CAS  Google Scholar 

  40. Roy P, Jha A, Yasarapudi VB, Ram T, Puttaraju B, Patil S, Dasgupta J (2017) Ultrafast bridge planarization in donor-π-acceptor copolymers drives intramolecular charge transfer. Nat Commun 8:1716

    PubMed  PubMed Central  Google Scholar 

  41. Raj MR, Anandan S (2013) Donor conjugated polymers-based on alkyl chain substituted oligobenzo[c]thiophene derivatives with well-balanced energy levels for bulk heterojunction solar cells. RSC Adv 3:14595–14608

    CAS  Google Scholar 

  42. Gao B, Meng X, Hu J, Hou X, Su H, Ma Q, Wang L, Meng J (2018) Enhanced efficiency of polymer solar cells based on modified Benzo[1,2-b:3,4-b]Dithiophene and Diketopyrrolopyrrole processed with1,8-Diiodooctane as solvent additive. J Nanoelectron Optoelectron 13(4):578–584

    CAS  Google Scholar 

  43. Li W, Hendriks KH, Furlan A, Roelofs WSC, Meskers SCJ, Wienk MM (2014) Janssen. R.a.J. effect of the Fibrillar microstructure on the efficiency of high molecular weight Diketopyrrolopyrrole-based polymer solar cells. Adv Mater 2014:1565–1570

    Google Scholar 

Download references

Funding

This research was funded by the Department of Science and Technology, India under Solar Energy Research Initiative scheme (DST/TMD/ SERI/S32) and DST-FIST, New Delhi for the sanction of research fund towards the development of new facilities. The authors SA & MA thank MHRD, New Delhi for sanctioning them a joint Scheme for Promotion of Academic and Research Collaboration project (SPARC/2018–2019/P236/SL).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Mohanraj Ramachandran and Michael Ruby Raj; formal analysis, Mohanraj Ramachandran, Michael Ruby Raj, and Ummu Habeeba; investigation, Mohanraj Ramachandran and Michael Ruby Raj; resources, Sambandam Anandan; writing-original draft preparation, Mohanraj Ramachandran and Michael Ruby Raj; writing-review and editing, Sambandam Anandan and Andrea Sorrentino; supervision, Muthupandian Ashokkumar; funding acquisition, Sambandam Anandan.

Corresponding author

Correspondence to Sambandam Anandan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, M., Raj, M.R., Azeez, U.H.A. et al. Synthesis of random copolymer using Zig-Zag Naphthodithiophene for bulk Heterojunction polymer solar cell applications. J Polym Res 27, 171 (2020). https://doi.org/10.1007/s10965-020-02161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02161-x

Keywords

Navigation