Skip to main content
Log in

Recent trends of silicon elastomer-based nanocomposites and their sensing applications

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This paper reviews the various fabrication methodologies explored for the polydimethylsiloxane (PDMS) based nanocomposites along with their applications in gas sensing and other associated domains. PDMS is well known polymer for its biocompatibility, durability, transparency, and adoptability to any size and shape via replication technique. Envisioning its potential and prospects in flexible device realization, this review discusses various methods used by researchers to develop PDMS-based nanocomposites and approaches to improve their functional properties along with their associated applications. This review article aims to provide insights into the state-of-the-art work carried out in this province which will certainly be helpful for researchers in the field of sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Raj M, Chakraborty K, Microfluidics SPDMS (2020) A Mini Review. J Appl Polym Sci 137(27):48958. https://doi.org/10.1002/APP.48958

    Article  Google Scholar 

  2. Tayyaba S, Ashraf MW, Ahmad Z, Wang N, Afzal MJ, Afzulpurkar N (2021) Fabrication and analysis of polydimethylsiloxane (PDMS) microchannels for biomedical application. Process9(1):57. https://doi.org/10.3390/PR9010057

  3. Nag A, Feng S, Mukhopadhyay SC, Kosel J, Inglis D (2018) 3D printed mould-based graphite/PDMS sensor for low-force applications. Sens Actuators Phys 280:525–534. https://doi.org/10.1016/J.SNA.2018.08.028

    Article  CAS  Google Scholar 

  4. Simorangkir RBVB, Yang Y, Matekovits L, Esselle KP (2017) Dual-band dual-mode textile antenna on PDMS substrate for body-centric communications. IEEE Antennas Wirel Propag Lett 16:677–680. https://doi.org/10.1109/LAWP.2016.2598729

    Article  Google Scholar 

  5. Leclerc E, Sakai Y, Fujii TA, Multi-Layer PDMS (2003) Microfluidic device for tissue engineering applications. Proc IEEE Micro Electro Mech Syst 415–418. https://doi.org/10.1109/MEMSYS.2003.1189774

  6. Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci. https://doi.org/10.1002/pen.20921

    Article  Google Scholar 

  7. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer. https://doi.org/10.1016/j.polymer.2008.04.017

    Article  Google Scholar 

  8. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer. https://doi.org/10.1016/j.polymer.2010.11.042

    Article  Google Scholar 

  9. Verma G, Mondal K, Gupta A (2021) Si-based MEMS resonant sensor: A review from microfabrication perspective. Microelectron J 118:1–64. https://doi.org/10.1016/j.mejo.2021.105210

    Article  CAS  Google Scholar 

  10. Kishnani V, Verma G, Pippara RK, Yadav A, Chauhan PS, Gupta A (2021) Highly sensitive, ambient temperature CO sensor using tin oxide based composites. Sens Actuators Phys 332:113111. https://doi.org/10.1016/J.SNA.2021.113111

    Article  CAS  Google Scholar 

  11. Chauhan PS, Rai A, Gupta A, Bhattacharya S (2017) Enhanced photocatalytic performance of vertically grown ZnO nanorods decorated with metals (Al, Ag, Au, and Au–Pd) for degradation of industrial dye. Mater Res Express 4(5):055004. https://doi.org/10.1088/2053-1591/AA6D31

    Article  Google Scholar 

  12. Biswal HJ, Vundavilli PR, Gupta A (2021) High aspect ZnO nanorod growth over electrodeposited tubes for photocatalytic degradation of EtBr dye. RSC Adv 11(3):1623–1634. https://doi.org/10.1039/d0ra08124h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta A, Pandey SS, Bhattacharya S (2013) High aspect ZnO nanostructures based hydrogen sensing. AIP Conf Proc 1536:291–292. https://doi.org/10.1063/1.4810215

  14. Singh P, Kant R, Rai A, Gupta A, Bhattacharya S (2019) Materials science in semiconductor processing facile synthesis of ZnO/GO nanoflowers over Si substrate for improved photocatalytic decolorization of MB dye and industrial wastewater under solar irradiation. Mater Sci Semicond Process 89:6–17. https://doi.org/10.1016/j.mssp.2018.08.022

    Article  CAS  Google Scholar 

  15. Sheshkar N, Verma G, Pandey C, Kumar A, Ankur S (2021) Enhanced thermal and mechanical properties of hydrophobic graphite-embedded polydimethylsiloxane composite. J Polym Res 28(403):1–11. https://doi.org/10.1007/s10965-021-02774-w

    Article  CAS  Google Scholar 

  16. Kumar Verma G, Ansari MZ (2019) Design, simulation of piezoresistive polymer accelerometer. IOP Conf Ser Mater Sci Eng 561(1). https://doi.org/10.1088/1757-899X/561/1/012128

  17. Patel VK, Kant R, Chauhan PS, Bhattacharya S (2022) Trends in fabrication of polymers and polymer composites. AIP Publishing, Melville, New York. https://doi.org/10.1063/9780735423916

    Book  Google Scholar 

  18. Sharma A, Pandey A, Shukla DK, Pandey KN (2018) Effect of self-healing dicyclopentadiene microcapsules on fracture toughness of epoxy. Mater Today Proc 5(10):21256–21262. https://doi.org/10.1016/J.MATPR.2018.06.526

    Article  CAS  Google Scholar 

  19. Gupta A, Pal P (2018) Flexible sensors for biomedical application. Energy Environ Sustain 287–314. https://doi.org/10.1007/978-981-10-7751-7_13

  20. Sharma AK, Sheshkar N, Gupta A (2021) Static and dynamic stability of dielectric elastomer fiber composites. Mater Today Proc 44:2043–2047. https://doi.org/10.1016/J.MATPR.2020.12.151

  21. Atwe A, Gupta A, Kant R, Das M, Sharma I, Bhattacharya S (2014) A novel microfluidic switch for pH control using Chitosan based hydrogels. Microsyst Technol. https://doi.org/10.1007/s00542-014-2112-0

    Article  Google Scholar 

  22. Singh RK, Kumar A, Kant R, Gupta A, Suresh E, Bhattacharya S (2014) Design and fabrication of 3-dimensional helical structures in polydimethylsiloxane for flow control applications. Microsyst Technol 20(1):101–111. https://doi.org/10.1007/s00542-013-1738-7

    Article  CAS  Google Scholar 

  23. Chen G, Svec F, Knapp DR (2008) Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer. Lab Chip 8(7):1198–1204. https://doi.org/10.1039/b803293a

    Article  CAS  PubMed  Google Scholar 

  24. Reyes DR, Iossifidis D, Auroux P, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology 74(12):2623–2636

  25. Kishnani V, Park S, Nakate UT, Mondal K, Gupta A (2022) Nano-functionalized paper-based IoT enabled devices for point-of-care testing: A review. Biomed Microdevices 24(1). https://doi.org/10.1007/S10544-021-00588-7

  26. Gupta A, Patel VK, Pandey C (2021) Functional characterization of nano-porous silicate-polymer composite for bovine serum albumin immobilization. Sens Int 2:100080. https://doi.org/10.1016/J.SINTL.2021.100080

    Article  Google Scholar 

  27. Biswal HJ, Rout P, Vundavilli PR, Gupta A (2021) Laser-assisted microhole fabrication in a flexible polymer substrate. Lasers Eng 49(1):3–20

    Google Scholar 

  28. Gupta A, Sundriyal P, Basu A, Manoharan K, Kant R, Bhattacharya S (2019) Nano-finishing of MEMS-based platforms for optimum optical sensing. J Micromanufacturing 3(1):39–53. https://doi.org/10.1177/2516598419862676

    Article  Google Scholar 

  29. Nguyen NT, Huang X, Chuan TK (2002) MEMS-Micropumps: A review. J Fluids Eng Trans ASME. https://doi.org/10.1115/1.1459075

    Article  Google Scholar 

  30. Jeon NL, Chiu DT, Wargo CJ, Wu H, Choi IS, Anderson JR, Whitesides GM (2002) Design and fabrication of integrated passive valves and pumps for flexible polymer 3-dimensional microfluidic systems. Biomed Microdevices. https://doi.org/10.1023/A:1014683114796

    Article  Google Scholar 

  31. Nguyen NT, Huang X (2001) Miniature valveless pumps based on printed circuit board technique. Sens Actuators Phys. https://doi.org/10.1016/S0924-4247(00)00500-8

    Article  Google Scholar 

  32. Anand SS, Philip BK, Mehendale HM (2014) Volatile organic compounds. In Encyclopedia of Toxicology: Third Edition. https://doi.org/10.1016/B978-0-12-386454-3.00358-4

  33. Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, DuSaire MG, Ro KS (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere. https://doi.org/10.1016/j.chemosphere.2011.06.108

    Article  PubMed  Google Scholar 

  34. Berenjian A, Chan N, Malmiri HJ (2012) Volatile organic compounds removal methods: A review. Am J Biochem Biotechnol. https://doi.org/10.3844/ajbbsp.2012.220.229

    Article  Google Scholar 

  35. Li X, Zhang L, Yang Z, He Z, Wang P, Yan Y, Ran J (2020) Hydrophobic modified activated carbon using PDMS for the adsorption of VOCs in humid condition. Sep Purif Technol 239(October 2019):116517. https://doi.org/10.1016/j.seppur.2020.116517

  36. Troughton MJ (2009) Polycarbonate. William Andrew Publishing. https://doi.org/10.1016/B978-0-8155-1581-4.50029-9

  37. Hasegawa M, Horie K (2001) Photophysics, photochemistry, and optical properties of polyimides. Prog Polym Sci 26(2):259–335. https://doi.org/10.1016/S0079-6700(00)00042-3

    Article  CAS  Google Scholar 

  38. Xiao M, Sun L, Liu J, Li Y, Gong K (2002) Synthesis and properties of polystyrene/graphite nanocomposites. Polym (Guildf) 43(8):2245–2248. https://doi.org/10.1016/S0032-3861(02)00022-8

    Article  CAS  Google Scholar 

  39. Li JH, Hong RY, Li MY, Li HZ, Zheng Y, Ding J (2009) Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog Org Coatings 64(4):504–509. https://doi.org/10.1016/J.PORGCOAT.2008.08.013

    Article  CAS  Google Scholar 

  40. Gupta A, Patel VK, Kant R, Bhattacharya S (2016) Surface modification strategies for fabrication of nano-biodevices: A critical review. Rev Adhes Adhes 4(2):166–191. https://doi.org/10.7569/RAA.2016.097307

    Article  CAS  Google Scholar 

  41. Chini SF, Amirfazli A (2010) Understanding pattern collapse in photolithography process due to capillary forces. Langmuir 26(16):13707–13714. https://doi.org/10.1021/la101521k

    Article  CAS  PubMed  Google Scholar 

  42. Kumar A, Gupta A, Kant R, Akhtar SN, Tiwari N, Ramkumar J, Bhattacharya S (2013) Optimization of laser machining process for the preparation of photomasks, and its application to microsystems fabrication. J Micro/Nanolithography MEMS MOEMS 12(4):041203

    Article  Google Scholar 

  43. Gupta A, Sundriyal P, Basu A, Manoharan K, Kant R, Bhattacharya S (2020) Nano-finishing of MEMS-based platforms for optimum optical sensing. J Micromanuf 3(1):39–53

    Article  Google Scholar 

  44. Wang CH, Lee GB (2006) Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels. J Micromech Microeng 16(2):341–348. https://doi.org/10.1088/0960-1317/16/2/019

    Article  CAS  Google Scholar 

  45. Kokkoris G, Tserepi A, Boudouvis AG, Gogolides E (2004) Simulation of SiO2 and Si feature etching for microelectronics and microelectromechanical systems fabrication: A combined simulator coupling modules of surface etching, local flux calculation, and profile evolution. J Vac Sci Technol A Vacuum Surfaces Film 22(4):1896–1902. https://doi.org/10.1116/1.1738660

    Article  CAS  Google Scholar 

  46. Unger MA, Chou H, Thorsen T, Scherer A, Stephen R, Unger MA, Chou H, Thorsen T, Scherer A, Quake SR (2016) Linked references are available on JSTOR for this article: Valves and pumps by multilayer soft lithography 288(5463):113–116

  47. Yilgör E, Yilgör I (2014) Silicone containing copolymers: Synthesis, properties and applications. Prog Polym Sci 39(6):1165–1195. https://doi.org/10.1016/j.progpolymsci.2013.11.003

    Article  CAS  Google Scholar 

  48. Mondal K, Balasubramaniam B, Gupta A, Lahcen AA, Kwiatkowski M (2019) Carbon nanostructures for energy and sensing applications. J Nanotechnol 10–13. https://doi.org/10.1155/2019/1454327

  49. Gupta A, Gangopadhyay S, Gangopadhyay K, Bhattacharya S (2016) Palladium-functionalized nanostructured platforms for enhanced hydrogen sensing. Nanomater Nanotechnol 6. https://doi.org/10.5772/63987

  50. Gupta A, Srivastava A, Mathai CJ, Gangopadhyay K, Gangopadhyay S, Bhattacharya S (2014) Nano porous palladium sensor for sensitive and rapid detection of hydrogen. Sens Lett 12(8):1279–1285. https://doi.org/10.1166/sl.2014.3307

    Article  Google Scholar 

  51. Gupta A, Parida PK, Pal P (2019) Functional films for gas sensing applications: A review. Sensors for Automotive and Aerospace Applications. Springer Singapore, pp 7–37. https://doi.org/10.1007/978-981-13-3290-6

  52. Brittain S, Paul K, Zhao XM, Whitesides G (1998) Soft lithography and microfabrication. Phys World 11(5):31–36. https://doi.org/10.1088/2058-7058/11/5/30

    Article  CAS  Google Scholar 

  53. Hale PS, Kappen P, Prissanaroon W, Brack N, Pigram PJ, Liesegang J (2007) Minimizing silicone transfer during micro-contact printing. Appl Surf Sci 253(8):3746–3750. https://doi.org/10.1016/j.apsusc.2005.04.060

    Article  CAS  Google Scholar 

  54. Man PF, Jones DK, Mastrangelo CH (1997) Microfluidic plastic capillaries on silicon substrates: A new inexpensive technology for bioanalysis chips. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS). https://doi.org/10.1109/memsys.1997.581840

  55. Kim E, Xia Y, Whitesides GM (1996) Micromolding in capillaries: Applications in materials science. J Am Chem Soc 118(24):5722–5731. https://doi.org/10.1021/ja960151v

    Article  CAS  Google Scholar 

  56. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373. https://doi.org/10.1146/ANNUREV.BIOENG.3.1.335

    Article  CAS  PubMed  Google Scholar 

  57. Whitesides GM, Love JC (2001) The art of building small. Sci Am 285(3):38–47. https://doi.org/10.1038/SCIENTIFICAMERICAN0901-38

    Article  CAS  PubMed  Google Scholar 

  58. Lee JH, Kim CH, Ho KM, Constant K (2005) Two-polymer microtransfer molding for highly layered microstructures. Adv Mater 17(20):2481–2485. https://doi.org/10.1002/adma.200500721

    Article  CAS  Google Scholar 

  59. Zhao XM, Xia Y, Whitesides GM (1996) Fabrication of three‐dimensional micro‐structures: Microtransfer molding. Adv Mater 8(10):837–840. https://doi.org/10.1002/ADMA.19960081016

    Article  CAS  Google Scholar 

  60. Chan EKL, Wong CKY, Lee M, Yuen MMF, Lee YK (2005) Using PDMS micro-transfer moulding for polymer flip chip packaging on MEMS. Proc Electron Components Technol Conf 2:1071–1076. https://doi.org/10.1109/ECTC.2005.1441404

  61. Liyu D, Nemati SH, Vasdekis AE (2016) Solvent‐assisted prototyping of microfluidic and optofluidic microsystems in polymers. J Polym Sci Part B Polym Phys 54(17):1681–1686. https://doi.org/10.1002/polb.24091

    Article  CAS  Google Scholar 

  62. Radha B, Kulkarni GU (2016) Micromolding-a soft lithography technique. Micromanuf Process 2016 No October 329–347. https://doi.org/10.1201/b13020-25

  63. Katare P, Gorthi SS (2020) Microwave irradiation-based rapid curing of PDMS for microfluidic applications. Microfluid Nanofluid. https://doi.org/10.1007/s10404-020-02348-0

    Article  Google Scholar 

  64. Rogers JA (1998) Generating∼ 90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask. J Vac Sci Technol B Microelectron Nanom Struct 16(1):59. https://doi.org/10.1116/1.589836

    Article  CAS  Google Scholar 

  65. Paik S, Kim G, Chang S, Lee S, Jin D, Jeong KY, Lee IS, Lee J, Moon H, Lee J et al (2020) Near-field sub-diffraction photolithography with an elastomeric photomask. Nat Commun 11(1):1–13. https://doi.org/10.1038/s41467-020-14439-1

    Article  CAS  Google Scholar 

  66. SadAbadi H, Badilescu S, Packirisamy M, Wüthrich R (2013) Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones. Biosens Bioelectron 44(1):77–84. https://doi.org/10.1016/J.BIOS.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  67. Chen J, Zhu Y, Jiang WA (2020) Stretchable and transparent strain sensor based on sandwich-like PDMS / CNTs / PDMS composite containing an ultrathin conductive CNT layer. Compos Sci Technol 186(September 2019):107938. https://doi.org/10.1016/j.compscitech.2019.107938

  68. Lee MH, Huntington MD, Zhou W, Yang J, Odom TW (2011) Programmable soft lithography: solvent-assisted. Nano Lett 311–315. https://doi.org/10.1021/nl102206x

  69. Blattmann CO, Pratsinis SE (2018) Single-step fabrication of polymer nanocomposite films. Mater (Basel) 11(7). https://doi.org/10.3390/MA11071177

  70. Ataollahi F, Pramanik S, Moradi A, Dalilottojari A, Pingguan-Murphy B, Wan Abas WAB, Abu Osman NA (2015) Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates. J Biomed Mater Res A 103(7):2203–2213. https://doi.org/10.1002/JBM.A.35186

    Article  CAS  PubMed  Google Scholar 

  71. Park M, Park J, Jeong U (2014) Design of conductive composite elastomers for stretchable electronics. undefined 9(2):244–260. https://doi.org/10.1016/J.NANTOD.2014.04.009

  72. Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5(12):853–857. https://doi.org/10.1038/NNANO.2010.232

    Article  CAS  PubMed  Google Scholar 

  73. Chu K, Kim D, Sohn Y, Lee S, Moon C, Park S (2013) Electrical and thermal properties of carbon-nanotube composite for flexible electric heating-unit applications. IEEE Electron Device Lett 34(5):668–670. https://doi.org/10.1109/LED.2013.2249493

    Article  CAS  Google Scholar 

  74. Kim JA, Lee SH, Park H, Kim JH, Park TH (2010) Microheater based on magnetic nanoparticle embedded PDMS. Nanotechnology 21(16):165102. https://doi.org/10.1088/0957-4484/21/16/165102

    Article  CAS  PubMed  Google Scholar 

  75. Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635. https://doi.org/10.1021/JA067457E

    Article  CAS  PubMed  Google Scholar 

  76. Sun J, Zhuang J, Shi J, Kormakov S, Liu Y, Yang Z, Wu D (2019) Highly elastic and ultrathin nanopaper-based nanocomposites with superior electric and thermal characteristics. J Mater Sci 54(11):8436–8449. https://doi.org/10.1007/s10853-019-03472-1

    Article  CAS  Google Scholar 

  77. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon N Y 44(9):1624–1652. https://doi.org/10.1016/j.carbon.2006.02.038

    Article  CAS  Google Scholar 

  78. Sun J, Shen J, Chen S, Cooper MA, Fu H, Wu D, Yang Z (2018) Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. Polym (Basel) 10(5):1–22. https://doi.org/10.3390/polym10050505

    Article  CAS  Google Scholar 

  79. Sun J, Zhao Y, Yang Z, Shen J, Cabrera E, Lertola MJ, Yang W, Zhang D, Benatar A, Castro JM et al (2018) Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen–phosphorus flame retardant. Nanotechnology 29(35):0–27. https://doi.org/10.1088/1361-6528/aacc59

    Article  CAS  Google Scholar 

  80. Chen MJ, Shao ZB, Wang XL, Chen L, Wang YZ (2012) Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen–phosphorus flame retardant. Ind Eng Chem Res. https://doi.org/10.1021/ie301004d

    Article  Google Scholar 

  81. Zhu D, Handschuh-Wang S, Zhou X (2017) Recent progress in fabrication and application of polydimethylsiloxane sponges. 5. https://doi.org/10.1039/c7ta04577h

  82. Zhao X, Li L, Li B, Zhang J, Wang A, Durable Superhydrophobic/Superoleophilic PDMS (2014) Creep and recovery of polystyrene composites filled with graphene additives. J Mater Chem A 2(43):18281–18287. https://doi.org/10.1039/c4ta04406a

    Article  CAS  Google Scholar 

  83. Hamdani S, Longuet C, Perrin D, Lopez-cuesta JM, Ganachaud F (2009) Creep and recovery of polystyrene composites filled with graphene additives. Polym Degrad Stab 94(4):465–495. https://doi.org/10.1016/j.polymdegradstab.2008.11.019

    Article  CAS  Google Scholar 

  84. Tang LC, Wang X, Gong LX, Peng K, Zhao L, Chen Q, Wu L, Bin; Jiang JX, Lai GQ (2014) Creep and recovery of polystyrene composites filled with graphene additives. Compos Sci Technol 91:63–70. https://doi.org/10.1016/j.compscitech.2013.11.028

    Article  CAS  Google Scholar 

  85. Gong LX, Zhao L, Tang LC, Liu HY, Mai YW (2015) Balanced electrical, thermal and mechanical properties of epoxy composites filled with chemically reduced graphene oxide and rubber nanoparticles. Compos Sci Technol 121:104–114. https://doi.org/10.1016/j.compscitech.2015.10.023

    Article  CAS  Google Scholar 

  86. Gong LX, Pei YB, Han QY, Zhao L, Wu LB, Jiang JX, Tang LC (2016) Polymer grafted reduced graphene oxide sheets for improving stress transfer in polymer composites. Compos Sci Technol 134:144–152. https://doi.org/10.1016/j.compscitech.2016.08.014

    Article  CAS  Google Scholar 

  87. Wu S, Zhang J, Ladani RB, Ravindran AR, Mouritz AP, Kinloch AJ, Wang CH (2017) Novel Electrically Conductive Porous PDMS / Carbon Nanofi Ber Composites for Deformable Strain Sensors and Conductors. Appl materails interfaces 3–11. https://doi.org/10.1021/acsami.7b00847

  88. Rivero PJ, Goicoechea J, Urrutia A, Matias IR, Arregui FJ (2013) Multicolor layer-by-layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles. Nanoscale Res Lett 8(1):1–10. https://doi.org/10.1186/1556-276X-8-438

    Article  CAS  Google Scholar 

  89. Reincke F, Hickey SG, Kegel WK, Vanmaekelbergh D, Reincke ]F, Hickey SG, Vanmaekelbergh PD, Kegel WK (2004) Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew Chemie Int Ed 43(4):458–462. https://doi.org/10.1002/ANIE.200352339

    Article  CAS  Google Scholar 

  90. Lu G, Li H, Zhang H (2012) Gold-Nanoparticle-Embedded Polydimethylsiloxane Elastomers for Highly Sensitive Raman Detection. Small 8(9):1336–1340. https://doi.org/10.1002/SMLL.201102258

    Article  CAS  PubMed  Google Scholar 

  91. Ozmen M, Ertekin B, Ersoz M, Paunov VN (2013) Fabrication of albumin-micropatterned surfaces by colloidal microcontact printing technique. RSC Adv 3(26):10420–10426. https://doi.org/10.1039/C3RA40507A

    Article  CAS  Google Scholar 

  92. Wang T, Colver PJ, Bon SAF, Keddie JL (2009) Soft polymer and nano-clay supracolloidal particles in adhesives: synergistic effects on mechanical properties. Soft Matter 5(20):3842–3849. https://doi.org/10.1039/b904740a

    Article  CAS  Google Scholar 

  93. Shen M, Sun Y, Xu J, Guo X, Prud’Homme RK (2014) Rheology and adhesion of poly (acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives. Langmuir 30(6):1636–1642. https://doi.org/10.1021/la4045623

    Article  CAS  PubMed  Google Scholar 

  94. Khan U, May P, Porwal H, Nawaz K, Coleman JN (2013) Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. ACS Appl Mater Interfaces 5(4):1423–1428. https://doi.org/10.1021/am302864f

    Article  CAS  PubMed  Google Scholar 

  95. Ramakrishna SN, Clasohm LY, Rao A, Spencer ND (2011) Controlling adhesion force by means of nanoscale surface roughness. Langmuir 27(16):9972–9978. https://doi.org/10.1021/la201727t

    Article  CAS  PubMed  Google Scholar 

  96. Patil S, Malasi A, Majumder A, Ghatak A, Sharma A (2012) Reusable antifouling viscoelastic adhesive with an elastic skin. Langmuir 28(1):42–46. https://doi.org/10.1021/la203871c

    Article  CAS  PubMed  Google Scholar 

  97. Patil S, Ranjan A, Sharma A (2012) Prefracture Instabilities Govern Generation of Self-Affine Surfaces in Tearing of Soft Viscoelastic Elastomeric Sheets. Macromolecules 45(4):2066–2073. https://doi.org/10.1021/ma202339y

    Article  CAS  Google Scholar 

  98. Levitt AS, Alhabeb M, Hatter CB, Sarycheva A, Dion G, Gogotsi Y (2019) Multiwalled carbon nanotubes-embedded electrospun bacterial cellulose nanofibers. J Mater Chem A. https://doi.org/10.1039/c8ta09810g

    Article  Google Scholar 

  99. Chen P, Yun YS, Bak H, Cho SY, Jin HJ (2010) Multiwalled carbon nanotubes-embedded electrospun bacterial cellulose nanofibers. Mol Cryst Liq Cryst. https://doi.org/10.1080/15421401003613659

  100. de Dicastillo CL, Garrido L, Alvarado N, Romero J, Palma JL, Galotto MJ (2017) Improvement of polylactide properties through cellulose nanocrystals embedded in poly (vinyl alcohol) electrospun nanofibers. Nanomaterials. https://doi.org/10.3390/nano7050106

    Article  Google Scholar 

  101. Mehrasa M, Asadollahi MA, Ghaedi K, Salehi H, Arpanaei A (2015) Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2015.05.050

    Article  PubMed  Google Scholar 

  102. Wang T, Lei CH, Liu D, Manea M, Asua JM, Creton C, Dalton AB, Keddie JL (2008) A molecular mechanism for toughening and strengthening waterborne nanocomposites. Adv Mater 20(1):90–94. https://doi.org/10.1002/adma.200700821

    Article  CAS  Google Scholar 

  103. Brown HR (2016) Chain pullout and mobility effects in friction and lubrication. 263(5152):1411–1413. https://doi.org/10.1126/science.263.5152.1411

  104. Gaaz TS, Sulong AB, Akhtar MN, Kadhum AAH, Mohamad AB, Al-Amiery AA, McPhee DJ (2015) Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20(12):22833–22847. https://doi.org/10.3390/molecules201219884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang L, Chen Y, Lin L, Wang H, Huang X, Xue H, Gao J (2019) Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem Eng J 362(January):89–98. https://doi.org/10.1016/j.cej.2019.01.014

    Article  CAS  Google Scholar 

  106. El-Tantawy F, Kamada K, Ohnabe HA (2003) A novel way of enhancing the electrical and thermal stability of conductive epoxy resin–carbon black composites via the Joule heating effect for heating‐element applications. J Appl Polym Sci 87(2):97–109. https://doi.org/10.1002/app.10851

    Article  CAS  Google Scholar 

  107. Huang NJ, Zang J, Zhang GD, Guan LZ, Li SN, Zhao L, Tang LC (2017) Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons. RSC Adv 7(36):22045–22053. https://doi.org/10.1039/c7ra02439h

    Article  CAS  Google Scholar 

  108. Kharaghani D, Gitigard P, Ohtani H, Kim KO, Ullah S, Saito Y, Khan MQ, Kim IS (2019) Design and characterization of dual drug delivery based on in-situ assembled PVA/PAN core-shell nanofibers for wound dressing application. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-49132-x

    Article  CAS  Google Scholar 

  109. Yan F, Zhang X, Liu F, Li X, Zhang Z (2015) Adjusting the properties of silicone rubber filled with nanosilica by changing the surface organic groups of nanosilica. Compos Part B Eng 75:47–52. https://doi.org/10.1016/j.compositesb.2015.01.030

    Article  CAS  Google Scholar 

  110. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. https://doi.org/10.1002/bit.25160

    Article  PubMed  Google Scholar 

  111. Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci. https://doi.org/10.1016/j.memsci.2014.11.019

    Article  Google Scholar 

  112. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  Google Scholar 

  113. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2006.11.030

    Article  Google Scholar 

  114. Mittal V (2010) Optimization of polymer nanocomposite properties. https://doi.org/10.1002/9783527629275

  115. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater. https://doi.org/10.1021/cm0505244

    Article  Google Scholar 

  116. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev. https://doi.org/10.1021/cr068035q

    Article  PubMed  Google Scholar 

  117. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater. https://doi.org/10.1021/cm960441a

    Article  Google Scholar 

  118. Jeong BH, Hoek EMV, Yan Y, Subramani A, Huang X, Hurwitz G, Ghosh AK, Jawor A (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Memb Sci. https://doi.org/10.1016/j.memsci.2007.02.025

    Article  Google Scholar 

  119. Haraguchi K (2007) Nanocomposite hydrogels. Curr Opinion Solid State Mater Sci. https://doi.org/10.1016/j.cossms.2008.05.001

    Article  Google Scholar 

  120. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2005.06.016

    Article  Google Scholar 

  121. Yang D (2012) Application of nanocomposites for supercapacitors: characteristics and properties. Nanocompos New Trends Dev. https://doi.org/10.5772/50409

    Article  Google Scholar 

  122. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature. https://doi.org/10.1038/28818

    Article  Google Scholar 

  123. Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2016.10.010

    Article  Google Scholar 

  124. Cao Y, Li G, Li X (2016) Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications. Chem Eng J. https://doi.org/10.1016/j.cej.2016.01.114

    Article  Google Scholar 

  125. Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos Part A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2011.07.003

    Article  Google Scholar 

  126. Nguyen-Tri P, Nguyen TA, Carriere P, Ngo Xuan C (2018) Nanocomposite coatings: preparation, characterization, properties, and applications. Int J Corros. https://doi.org/10.1155/2018/4749501

    Article  Google Scholar 

  127. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano. https://doi.org/10.1021/nn9010472

    Article  PubMed  Google Scholar 

  128. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W (2005) Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans Dielectr Electr Insul. https://doi.org/10.1109/TDEI.2005.1511089

    Article  Google Scholar 

  129. Cyras VP, Manfredi LB, Ton-That MT, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2007.11.014

    Article  Google Scholar 

  130. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B. https://doi.org/10.1021/jp992307u

    Article  Google Scholar 

  131. Reda M, Al-Ghannam SM (2012) Synthesis and electrical properties of polyaniline composite with silver nanoparticles. Adv Mater Phys Chem. https://doi.org/10.4236/ampc.2012.22013

    Article  Google Scholar 

  132. Nelson JK, Hu Y (2005) Nanocomposite dielectrics–properties and implications. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/38/2/005

    Article  Google Scholar 

  133. Deng SB, Liao W, Yang JC, Cao ZJ, Wang YZ (2016) Flame-retardant and smoke-suppressed silicone foams with chitosan-based nanocoatings. Ind Eng Chem Res 55(27):7239–7248. https://doi.org/10.1021/acs.iecr.6b00532

    Article  CAS  Google Scholar 

  134. Yang J, Han CR, Duan JF, Xu F, Sun RC (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly (ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces. https://doi.org/10.1021/am4001997

    Article  PubMed  PubMed Central  Google Scholar 

  135. Klangmuang P, Sothornvit R (2016) Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2016.06.018

    Article  Google Scholar 

  136. Liu J, Ye L, Wooh S, Kappl M, Steffen W, Butt HJ (2019) Optimizing hydrophobicity and photocatalytic activity of PDMS-coated titanium dioxide. ACS Appl Mater Interfaces 11(30):27422–27425. https://doi.org/10.1021/acsami.9b07490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim J, Chaudhury MK, Owen MJ (1999) Hydrophobicity loss and recovery of silicone HV insulation. IEEE Trans Dielectr Electr Insul. https://doi.org/10.1109/94.798126

    Article  Google Scholar 

  138. Wang L, Sun B, Ziemer KS, Barabino GA, Carrier RL (2010) Chemical and physical modifications to poly (dimethylsiloxane) surfaces affect adhesion of Caco‐2 cells. J Biomed Mater Res - Part A. https://doi.org/10.1002/jbm.a.32621

    Article  Google Scholar 

  139. Bongaerts JHH, Fourtouni K, Stokes JR (2007) Soft-tribology: lubrication in a compliant PDMS–PDMS contact. Tribol Int. https://doi.org/10.1016/j.triboint.2007.01.007

    Article  Google Scholar 

  140. Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis. https://doi.org/10.1002/elps.200900475

    Article  PubMed  Google Scholar 

  141. Hillborg H, Gedde UW (1998) Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polym (Guildf). https://doi.org/10.1016/S0032-3861(97)00484-9

    Article  Google Scholar 

  142. Chuah YJ, Koh YT, Lim K, Menon NV, Wu Y, Kang Y (2015) Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci Rep. https://doi.org/10.1038/srep18162

    Article  PubMed  PubMed Central  Google Scholar 

  143. Konaka R, Kasahara E, Dunlap WC, Yamamoto Y, Chien KC, Inoue M (1999) Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radic Biol Med 27(3–4):294–300. https://doi.org/10.1016/S0891-5849(99)00050-7

    Article  CAS  PubMed  Google Scholar 

  144. Zarifi MH, Farsinezhad S, Abdolrazzaghi M, Daneshmand M, Shankar K (2016) Selective microwave sensors exploiting the interaction of analytes with trap states in TiO2 nanotube arrays. Nanoscale 8(14):7466–7473. https://doi.org/10.1039/c5nr06567d

    Article  CAS  PubMed  Google Scholar 

  145. Hillborg H, Gedde UW (1999) Hydrophobicity changes in silicone rubbers. IEEE Trans Dielectr Electr Insul. https://doi.org/10.1109/94.798127

    Article  Google Scholar 

  146. van Meer BJ, de Vries H, Firth KSA, van Weerd J, Tertoolen LGJ, Karperien HBJ, Jonkheijm P, Denning C, IJzerman AP, Mummery CL (2017) Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2016.11.062

    Article  PubMed  PubMed Central  Google Scholar 

  147. Gökaltun A, Kang YB, Yarmush ML, Usta OB, Asatekin A (2019) Simple surface modification of poly (dimethylsiloxane) via surface segregating smart polymers for biomicrofluidics. Sci Rep. https://doi.org/10.1038/s41598-019-43625-5

    Article  PubMed  PubMed Central  Google Scholar 

  148. Verma G, Gupta A (2022) Recent development in carbon nanotubes based gas sensors. J Mater Nanosci 9(1):3–12

    CAS  Google Scholar 

  149. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663. https://doi.org/10.1021/ie8019032

    Article  CAS  Google Scholar 

  150. Anderson MR, Mattes BR, Reiss H (1991) Gas separation membranes: a novel application for conducting polymers. Synth Met 43:1151–1154. https://doi.org/10.1016/0379-6779(91)91575-U

    Article  Google Scholar 

  151. Roberts DL, Ching GD (1986) Recovery of freon gases with silicone rubber membranes. Ind Eng Chem Process Des Dev 25(4):971–973. https://doi.org/10.1021/i200035a022

    Article  CAS  Google Scholar 

  152. Berean KJ, Ou JZ, Nour M, Field MR, Alsaif MMYA, Wang Y, Ramanathan R, Bansal V, Kentish S, Doherty CM et al (2015) Enhanced gas permeation through graphene nanocomposites. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.5b02995

    Article  Google Scholar 

  153. Nour M, Berean K, Balendhran S, Ou JZ, Plessis JD, McSweeney C, Bhaskaran M, Sriram S, Kalantar-zadeh K (2013) CNT/PDMS composite membranes for H2 and CH4 gas separation. Int J Hydrogen Energy 38(25):10494–10501. https://doi.org/10.1016/j.ijhydene.2013.05.162

    Article  CAS  Google Scholar 

  154. Nour M, Berean K, Griffin MJ, Matthews GI, Bhaskaran M, Sriram S, Kalantar-Zadeh K (2012) Nanocomposite carbon-PDMS membranes for gas separation. Sens Actuators B Chem 161(1):982–988. https://doi.org/10.1016/j.snb.2011.11.079

    Article  CAS  Google Scholar 

  155. Firpo G, Angeli E, Repetto L, Valbusa U (2015) Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes. J Memb Sci 481:1–8. https://doi.org/10.1016/j.memsci.2014.12.043

    Article  CAS  Google Scholar 

  156. Hwang I, Kim Y, Kim S, Ju B, Lee JA (2009) A facile fabrication of semiconductor nanowires gas sensor using PDMS patterning and solution deposition. Sens Actuators B Chem 136:224–229. https://doi.org/10.1016/j.snb.2008.10.042

    Article  CAS  Google Scholar 

  157. Gao Z, Song G, Zhang X, Li Q, Yang S, Wang T, Li Y, Zhang L, Guo L, Fu Y (2020) A facile PDMS coating approach to room-temperature gas sensors with high humidity resistance and long-term stability. Sens Actuators B Chem 325:128810. https://doi.org/10.1016/j.snb.2020.128810

    Article  CAS  Google Scholar 

  158. He H, Zhang M, Zhao T, Zeng H, Xing LA (2019) A self-powered gas sensor based on PDMS/Ppy triboelectric-gas-sensing arrays for the real-time monitoring of automotive exhaust gas at room temperature. Sci China Mater 62(10):1433–1444. https://doi.org/10.1007/s40843-019-9445-9

    Article  CAS  Google Scholar 

  159. Zhou T, Dong W, Qiu Y, Chen S, Wang X, Xie C, Zeng D (2021) Selectivity of a ZnO @ ZIF-71 @ PDMS Nanorod Array Gas Sensor Enhanced by Coating a Polymer Selective Separation Membrane. ACS Appl Mater Interfaces 13:54589–54596. https://doi.org/10.1021/acsami.1c16637

    Article  CAS  PubMed  Google Scholar 

  160. Nam Y, Yoo I, Yarimaga O, Park IS, Park D, Song S, Kim J, Lee CW (2014) Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing. Chem Commun 50:4251–4254. https://doi.org/10.1039/c4cc00567h

    Article  CAS  Google Scholar 

  161. Jeong YR, Park H, Jin SW, Hong SY, Lee SS, Ha JS (2015) Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv Funct Mater. https://doi.org/10.1002/adfm.201501000

    Article  Google Scholar 

  162. Gerlach C, Krumm D, Illing M, Lange J, Kanoun O, Odenwald S, Hubler A (2015) Printed MWCNT-PDMS-composite pressure sensor system for plantar pressure monitoring in ulcer prevention. IEEE Sens J. https://doi.org/10.1109/JSEN.2015.2392084

    Article  Google Scholar 

  163. Park M, Kim H, Youngblood JP (2008) Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnology. https://doi.org/10.1088/0957-4484/19/05/055705

    Article  PubMed  PubMed Central  Google Scholar 

  164. Fu X, Ramos M, Al-Jumaily AM, Meshkinzar A, Huang X (2019) Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance. J Mater Sci. https://doi.org/10.1007/s10853-018-2954-4

    Article  Google Scholar 

  165. Huang K, Ning H, Hu N, Liu F, Wu X, Wang S, Liu Y, Zou R, Yuan W, Alamusi et al (2020) Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Compos Sci Technol 192(March):108105. https://doi.org/10.1016/j.compscitech.2020.108105

    Article  CAS  Google Scholar 

  166. Li YQ, Huang P, Zhu W, Bin; Fu SY, Hu N, Liao K (2017) Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Sci Rep. https://doi.org/10.1038/srep45013

    Article  PubMed  PubMed Central  Google Scholar 

  167. Khan S, Tinku S, Lorenzelli L, Dahiya RS (2015) Flexible tactile sensors using screen-printed P (VDF-TrFE) and MWCNT/PDMS composites. IEEE Sens J. https://doi.org/10.1109/JSEN.2014.2368989

    Article  Google Scholar 

  168. Wang B, Lee BK, Kwak MJ, Lee DW (2013) Graphene/polydimethylsiloxane nanocomposite strain sensor. Rev Sci Instrum. https://doi.org/10.1063/1.4826496

    Article  PubMed  PubMed Central  Google Scholar 

  169. Chowdhury SA, Saha MC, Patterson S, Robison T, Liu Y (2019) Highly conductive polydimethylsiloxane/carbon nanofiber composites for flexible sensor applications. Adv Mater Technol 4(1):1–10. https://doi.org/10.1002/admt.201800398

    Article  CAS  Google Scholar 

  170. Hassan G, Bae J, Hassan A, Ali S, Lee CH, Choi Y (2018) Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate. Composites. https://doi.org/10.1016/j.compositesa.2018.01.031

    Article  Google Scholar 

  171. Luo R, Li H, Du B, Zhou S, Zhu Y (2020) A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends. Org Electron 76(August 2019):105451. https://doi.org/10.1016/j.orgel.2019.105451

    Article  CAS  Google Scholar 

  172. Rajitha G, Dash RK (2018) Optically transparent and high dielectric constant reduced graphene oxide (RGO)-PDMS based flexible composite for wearable and flexible sensors. Sens Actuators Phys. https://doi.org/10.1016/j.sna.2018.04.040

    Article  Google Scholar 

  173. Shi G, Lowe SE, Teo AJT, Dinh TK, Hwa S, Qin J, Zhang Y, Lin Y, Zhao H (2019) A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors. Appl Mater Today 16:482–492. https://doi.org/10.1016/j.apmt.2019.06.016

    Article  Google Scholar 

  174. Dashtaki NJM, Nassajpour-Esfahani AH, Bayareh M, Rezai P, Doostmohammadi A (2020) Highly conductive multi-walled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) nanocomposite for microfluidic applications. J Compos Mater. https://doi.org/10.1177/0021998320977643

    Article  Google Scholar 

  175. Bonyár A, Izsold Z, Borók A, Csarnovics I, Himics L, Veres M, Harsányi G (2018) PDMS-Au/Ag nanocomposite films as highly sensitive SERS substrates. Proceedings 2(13):1060. https://doi.org/10.3390/proceedings2131060

    Article  Google Scholar 

  176. Wu D, Wei M, Li R, Xiao T, Gong S, Xiao Z, Zhu Z (2019) A percolation network model to predict the electrical property of flexible CNT/PDMS composite films fabricated by spin coating technique. 174 (March). https://doi.org/10.1016/j.compositesb.2019.107034

  177. Promsawat N, Promsawat M, Janphuang P, Luo Z, Beeby S, Rojviriya C, Pakawanit P, Pojprapai S (2018) CNTs-added PMNT/PDMS flexible piezoelectric nanocomposite for energy harvesting application. Integr Ferroelectr 187(1):70–79. https://doi.org/10.1080/10584587.2018.1445684

    Article  CAS  Google Scholar 

  178. Jang HH, Park JS, Choi B (2019) Flexible piezoresistive pulse sensor using biomimetic PDMS mold replicated negatively from shark skin and PEDOT: PSS thin film. Sens Actuators Phys 286:107–114. https://doi.org/10.1016/j.sna.2018.12.015

    Article  CAS  Google Scholar 

  179. Xu M, Gao Y, Yu G, Lu C, Tan J, Xuan F (2018) Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing. Sens Actuators Phys 284:260–265. https://doi.org/10.1016/j.sna.2018.10.040

    Article  CAS  Google Scholar 

  180. Majooni Y, Mortaheb HR, Khodadadi Dizaji A (D 2019) Enhancement in pervaporative performance of PDMS membrane for separation of styrene from wastewater by hybridizing with reduced graphene oxide. J Environ Manage 2020(261):110189. https://doi.org/10.1016/j.jenvman.2020.110189

    Article  CAS  Google Scholar 

  181. Saharudin KA, Karim MA, Sreekantan S (2019) Preparation of a Polydimethylsiloxane (PDMS)/Graphene-Based Super-Hydrophobic Coating. Mater Today Proc 17:752–760. https://doi.org/10.1016/j.matpr.2019.06.359

    Article  CAS  Google Scholar 

  182. Bae J, Hwang Y, Ha JH, Kwon OS, Jang A, Kim HJ, An J, Lee CS, Park SH (D 2019) Versatile chemical sensors using oligosaccharides on cleanable PDMS/graphene hybrids for monitoring environmentally hazardous substances. Appl Surf Sci 2020(507):145139. https://doi.org/10.1016/j.apsusc.2019.145139

    Article  CAS  Google Scholar 

  183. Basu M, Parihar V, Lincon A, Joshi VP, Das S, DasGupta S (2021) Development of graphene oxide–PDMS composite dielectric for rapid droplet movement in digital microfluidic applications. Chem Eng Sci 230:116175. https://doi.org/10.1016/j.ces.2020.116175

    Article  CAS  Google Scholar 

  184. Oh JH, Woo JY, Jo S, Han CS (2019) Pressure-conductive rubber sensor based on liquid-metal-PDMS composite. Sens Actuators Phys 299:111610. https://doi.org/10.1016/j.sna.2019.111610

    Article  CAS  Google Scholar 

  185. Gupta A, Geeta B, Bhattacharya S (2019) Novel dipstick model for portable bio-sensing application. J Energy Environ Sustain 7:36–41. https://doi.org/10.47469/JEES.2019.V07.100075

    Article  Google Scholar 

  186. Memon F, Mukherji S (2019) CNT/CB-PDMS nanocomposite diaphragm pressure sensor for monitoring respiratory disorder Proc IEEE Conf Nanotechnol, 2018-July, 1–2. https://doi.org/10.1109/NANO.2018.8626357

  187. Zhai W, Xia Q, Zhou K, Yue X, Ren M, Zheng G (2019) Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability. Chem Eng J 372(January):373–382. https://doi.org/10.1016/j.cej.2019.04.142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author wishes to acknowledge the Startup Research Grant (SRG/2020/001895) provided by the Science and Engineering Research Board, Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Gupta.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict among the contributing authors related to the financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, G., Sheshkar, N., Pandey, C. et al. Recent trends of silicon elastomer-based nanocomposites and their sensing applications. J Polym Res 29, 195 (2022). https://doi.org/10.1007/s10965-022-03044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03044-z

Keywords

Navigation