Skip to main content

Advertisement

Log in

Unveiling the microstructural evolution of carbon fibers derived from polyamide-6

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyacrylonitrile-based carbon fibers have dominated the industry for decades, but the high cost of polyacrylonitrile has prevented the widespread adoption of carbon fiber in high-volume structural applications. As such, a significant amount of research has been dedicated to finding an alternative, low-cost carbon fiber precursor. In this work, carbon fibers were produced from polyamide-6 using metal salt impregnation and a thermo-oxidative stabilization step. To gain further insight into the carbonization process and microstructural transformation, the morphologies, crystallinities, elemental compositions, and thermal stabilities of the fibers were characterized at various stages of processing. The stabilization step resulted in a significant increase in carbon yield, indicating a dramatic increase in thermal stability. This is due to the crosslinking of polyamide-6 chains, which was confirmed by functional group analysis. The crystallinity of the fibers was also significantly altered during processing, as the produced carbon fibers consisted of pseudo-amorphous carbon with two distinct regions of metal salt impregnation. The findings and microstructural evolution mechanisms provide guidelines for further research into carbon fiber produced from polyamide-6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data acquired during this study is available from the corresponding author upon request.

References

  1. Wheatley A, Warren D, Das S (2013) Advanced composite materials for automotive applications

  2. Choi D, Kil HS, Lee S (2019) Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies. Carbon 142:610–649. https://doi.org/10.1016/j.carbon.2018.10.028

    Article  CAS  Google Scholar 

  3. Chung NDDL (1994) Carbon fiber composites

  4. Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130(2):713–728. https://doi.org/10.1002/app.39273

    Article  CAS  Google Scholar 

  5. Yusof N, Ismail AF (2012) Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. J Anal Appl Pyrolysis 93:1–13. https://doi.org/10.1016/j.jaap.2011.10.001

    Article  CAS  Google Scholar 

  6. Souto F, Calado V, Pereira N (2018) Lignin-based carbon fiber: A current overview. Mater Res Express. https://doi.org/10.1088/2053-1591/aaba00

    Article  Google Scholar 

  7. Brown KR, Harrell TM, Skrzypczak L, Scherschel A, Wu HF, Li X (2022) Carbon fibers derived from commodity polymers: a review. Carbon N Y 196:422–439. https://doi.org/10.1016/J.CARBON.2022.05.005

    Article  CAS  Google Scholar 

  8. Luo Y, Qu W, Cochran E, Bai X (2021) Enabling high-quality carbon fiber through transforming lignin into an orientable and melt-spinnable polymer. J Clean Prod 307:127252. https://doi.org/10.1016/j.jclepro.2021.127252

    Article  CAS  Google Scholar 

  9. Nordström Y, Joffe R, Sjöholm E (2013) Mechanical characterization and application of Weibull statistics to the strength of softwood lignin-based carbon fibers. J Appl Polym Sci 130(5):3689–3697. https://doi.org/10.1002/app.39627

    Article  CAS  Google Scholar 

  10. Röding T, Langer J, Barbosa TM, Bouhrara M, Gries T (2022) A Review of polyethylene-based carbon fiber manufacturing. Appl Res. https://doi.org/10.1002/APPL.202100013

    Article  Google Scholar 

  11. Choi D, Yoo SH, Lee S (2019) Safer and more effective route for polyethylene-derived carbon fiber fabrication using electron beam irradiation. Carbon N Y 146:9–16. https://doi.org/10.1016/j.carbon.2019.01.061

    Article  CAS  Google Scholar 

  12. Wortberg GS, De Palmenaer A, Beckers M, Seide G, Gries T (2015) Polyethylene-based carbon fibers by the use of sulphonation for stabilization. Fibers 3(3):373–379. https://doi.org/10.3390/fib3030373

    Article  CAS  Google Scholar 

  13. Barton BE et al (2017) High-modulus low-cost carbon fibers from polyethylene enabled by boron catalyzed graphitization. Small 13(36):1–7. https://doi.org/10.1002/smll.201701926

    Article  CAS  Google Scholar 

  14. Zhang SJ, Yu HQ, Feng HM (2006) PVA-based activated carbon fibers with lotus root-like axially porous structure. Carbon 44(10):2059–2068. https://doi.org/10.1016/j.carbon.2005.12.047

    Article  CAS  Google Scholar 

  15. Karacan I, Baysal G (2012) Investigation of the effect of cupric chloride on thermal stabilization of polyamide 6 as carbon fiber precursor. Fibers Polym 13(7):864–873. https://doi.org/10.1007/s12221-012-0864-7

    Article  CAS  Google Scholar 

  16. Karacan I, Meşeli H (2018) Characterization of amorphous carbon fibers produced from thermally stabilized polyamide 6 fibers. J Ind Text 47(6):1185–1211. https://doi.org/10.1177/1528083716682922

    Article  CAS  Google Scholar 

  17. Erzurumluoglu L, Rahman MM, Demirel T, Karacan I (2021) Fabrication of carbon fibers from the cupric ion impregnated and thermally stabilized poly(hexamethylene adipamide) precursor. J Ind Text. https://doi.org/10.1177/15280837211056984

    Article  Google Scholar 

  18. Karacan I, Tunçel KŞ (2013) Thermal stabilization of poly(hexamethylene adipamide) fibers in the presence of ferric chloride prior to carbonization. Polym Degrad Stab 98(9):1869–1881. https://doi.org/10.1016/j.polymdegradstab.2013.05.001

    Article  CAS  Google Scholar 

  19. Daulbayev C, Kaidar B, Sultanov F, Bakbolat B, Smagulova G, Mansurov Z (2021) The recent progress in pitch derived carbon fibers. S Afr J Chem Eng. https://doi.org/10.1016/j.sajce.2021.07.001

    Article  Google Scholar 

  20. Kim BJ et al (2014) Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon N Y 77:747–755. https://doi.org/10.1016/j.carbon.2014.05.079

    Article  CAS  Google Scholar 

  21. Soulis S, Konstantopoulos G, Koumoulos EP, Charitidis CA (2020) Impact of alternative stabilization strategies for the production of pan-based carbon fibers with high performance. Fibers. https://doi.org/10.3390/fib8060033

    Article  Google Scholar 

  22. Shin HK, Park M, Kim HY, Park SJ (2015) An overview of new oxidation methods for polyacrylonitrile-based carbon fibers. Carbon Lett 16(1):11–18. https://doi.org/10.5714/CL.2015.16.1.011

    Article  Google Scholar 

  23. Park S, Kil HS, Choi D, Song SK, Lee S (2019) Rapid stabilization of polyacrylonitrile fibers achieved by plasma-assisted thermal treatment on electron-beam irradiated fibers. J Ind Eng Chem 69:449–454. https://doi.org/10.1016/j.jiec.2018.10.008

    Article  CAS  Google Scholar 

  24. Cerruti P, Carfagna C (2010) Thermal-oxidative degradation of polyamide 6,6 containing metal salts. Polym Degrad Stab 95(12):2405–2412. https://doi.org/10.1016/j.polymdegradstab.2010.08.014

    Article  CAS  Google Scholar 

  25. Qi S et al (2021) New insight into the thermal-oxidative stability of polyamide 6: a comparison investigation on the effect of hindered amine and CuI/KI. Polym Eng Sci 61(2):348–361. https://doi.org/10.1002/pen.25578

    Article  CAS  Google Scholar 

  26. Liu S et al (2013) Crystalline transition and morphology variation of polyamide 6/CaCl 2 composite during the decomplexation process. Spectrochim Acta A Mol Biomol Spectrosc. 115:783–788. https://doi.org/10.1016/j.saa.2013.06.056

    Article  CAS  PubMed  Google Scholar 

  27. Kelkar DS, Bhat NV (1991) Investigation of structural and mechanical properties of copper-chloride-doped nylon-6 films. I. Structure. J Appl Polym Sci 43(1):191–195. https://doi.org/10.1002/app.1991.070430116

    Article  CAS  Google Scholar 

  28. Janssen K, Gijsman P, Tummers D (1995) Mechanistic aspects of the stabilization of polyamides by combinations of metal and halogen salts. Polym Degrad Stab 49(1):127–133. https://doi.org/10.1016/0141-3910(95)00065-T

    Article  CAS  Google Scholar 

  29. Liu W, Shi R, Zhang Z, Yan M, Chen X, Chen Y (2021) Coordination driven layer-by-layer deposition technology used for fabrication of flame retardant polyamide 66 fabric. Polym Adv Technol. https://doi.org/10.1002/pat.5335

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kong W, Lei Y, Yuan Y, Zhou C, Lei J (2017) Preparation and investigation of solid polymer electrolyte based on novel polyamide elastomer/metal salt. Macromol Res 25(8):864–870. https://doi.org/10.1007/s13233-017-5094-9

    Article  CAS  Google Scholar 

  31. Gijsman P, Dong W, Quintana A, Celina M (2016) Influence of temperature and stabilization on oxygen diffusion limited oxidation profiles of polyamide 6. Polym Degrad Stab 130:83–96. https://doi.org/10.1016/j.polymdegradstab.2016.05.024

    Article  CAS  Google Scholar 

  32. Zhu J et al (2019) Unveiling carbon ring structure formation mechanisms in polyacrylonitrile-derived carbon fibers. ACS Appl Mater Interfaces 11(45):42288–42297. https://doi.org/10.1021/acsami.9b15833

    Article  CAS  PubMed  Google Scholar 

  33. BASF (2014) Ultramid B27 E 01. pp 1–2

  34. Folomeshkin MS et al (2019) X-ray diffraction analysis and electron microscopy of the carbon fiber structure. Crystallogr Rep 64(1):1–5. https://doi.org/10.1134/S1063774519010085

    Article  CAS  Google Scholar 

  35. Li WW, Kang HL, Xu J, Liu RG (2017) Effects of ultra-high temperature treatment on the microstructure of carbon fibers. Chin J Polym Sci (English Ed.) 35(6):764–772. https://doi.org/10.1007/s10118-017-1922-9

    Article  CAS  Google Scholar 

  36. Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92(8):1421–1432. https://doi.org/10.1016/j.polymdegradstab.2007.03.023

    Article  CAS  Google Scholar 

  37. Wang YY, Wu GP, Li RM, Li XL, Lu CX (2014) Fracture mechanisms of polyacrylonitrile-based high-strength type carbon fibers. Fibers Polym 15(12):2541–2543. https://doi.org/10.1007/s12221-014-2541-5

    Article  CAS  Google Scholar 

  38. Zhu J, Park SW, Joh H-I, Kim HC, Lee S (2013) Preparation and characterization of isotropic pitch-based carbon fiber. Carbon Lett 14(2):94–98. https://doi.org/10.5714/cl.2013.14.2.094

    Article  Google Scholar 

  39. Zhang J, Richardson HW (2016) Copper Compounds. In Ullmann's Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a07_567.pub2

  40. Bhatta LKG, Bhatta UM, Susheel Kumar GSK, Venkatesh K (2019) An experimental study on thermal decomposition of microwave synthesized Cu2(OH)3Cl to copper oxide nanoparticles. Mater Res Express. https://doi.org/10.1088/2053-1591/ab55b6

    Article  Google Scholar 

  41. Cheng G, Hight Walker AR (2010) Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity. Anal Bioanal Chem 396(3):1057–1069. https://doi.org/10.1007/s00216-009-3203-0

    Article  CAS  PubMed  Google Scholar 

  42. Sinclair R, Itoh T, Chin R (2002) In situ TEM studies of metal-carbon reactions. Microsc Microanal 8(4):288–304. https://doi.org/10.1017/s1431927602020226

    Article  CAS  PubMed  Google Scholar 

  43. Murthy NS (1991) Metastable crystalline phases in nylon 6. Polym Commun 32(10)

  44. Yang Z et al (2010) Phase stability and melting behavior of the alpha and gamma phases of nylon 6. J Appl Polym Sci 116(5):2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  45. Vasanthan N, Salem DR (2001) FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing. J Polym Sci Part B Polym Phys 39(5):536–547. https://doi.org/10.1002/1099-0488(20010301)39:5%3c536::AID-POLB1027%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  46. Ramesh C, Bhoje Gowd E (2001) High-temperature X-ray diffraction studies on the crystalline transitions in the α- and γ-forms of nylon-6. Macromolecules 34(10):3308–3313. https://doi.org/10.1021/ma0006979

    Article  CAS  Google Scholar 

  47. Ko KS, Park CW, Yoon SH, Oh SM (2001) Preparation of Kevlar-derived carbon fibers and their anodic performances in Li secondary batteries. Carbon N Y 39(11):1619–1625. https://doi.org/10.1016/S0008-6223(00)00298-0

    Article  CAS  Google Scholar 

  48. Wang S, Chen ZH, Ma WJ, Ma QS (2006) Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber. Ceram Int 32(3):291–295. https://doi.org/10.1016/j.ceramint.2005.02.014

    Article  CAS  Google Scholar 

  49. Vázquez-Santos MB, Geissler E, László K, Rouzaud JN, Martínez-Alonso A, Tascón JMD (2012) Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbon fibers. J Phys Chem C 116(1):257–268. https://doi.org/10.1021/jp2084499

    Article  CAS  Google Scholar 

  50. Wu H et al (2022) Engineering microstructure toward split-free mesophase pitch-based carbon fibers. J Mater Sci 57(4):2411–2423. https://doi.org/10.1007/s10853-021-06770-9

    Article  CAS  Google Scholar 

  51. Liu S et al (2018) Large-scale synthesis of porous carbon: Via one-step CuCl2 activation of rape pollen for high-performance supercapacitors. J Mater Chem A 6(25):12046–12055. https://doi.org/10.1039/c8ta02838a

    Article  CAS  Google Scholar 

  52. Wu T, Lu C (2022) Study on Raman multi-peak fitting and structure quantitative analysis of PAN-based carbon fibers. J Mater Sci. https://doi.org/10.1007/s10853-022-07589-8

    Article  Google Scholar 

  53. Washer G, Blum F (2008) Raman spectroscopy for the nondestructive testing of carbon fiber. Adv Mater Sci Eng 2008:2–5. https://doi.org/10.1155/2008/693207

    Article  CAS  Google Scholar 

  54. Qian X et al (2019) Effect of fiber microstructure studied by Raman spectroscopy upon the mechanical properties of carbon fibers. J Raman Spectrosc 50(5):665–673. https://doi.org/10.1002/jrs.5569

    Article  CAS  Google Scholar 

  55. Roh J-S (2008) Structural study of the activated carbon fiber using laser Raman spectroscopy. Carbon Lett 9(2):127–130. https://doi.org/10.5714/cl.2008.9.2.127

    Article  Google Scholar 

  56. Lee JE, Choi J, Lee DJ, Lee S, Chae HG (2022) Radial microstructure development of polyacrylonitrile (PAN)-based carbon fibers. Carbon N Y 191:515–524. https://doi.org/10.1016/j.carbon.2022.02.023

    Article  CAS  Google Scholar 

  57. Samoilov VM et al (2019) Raman spectroscopy and crystalline structure of polyacrylonitrile-based carbon fibres. Adv Mater Technol 3(15):008–015. https://doi.org/10.17277/amt.2019.03.pp.008-015

  58. Brubaker ZE, Langford JJ, Kapsimalis RJ, Niedziela JL (2021) Quantitative analysis of Raman spectral parameters for carbon fibers: practical considerations and connection to mechanical properties. J Mater Sci. https://doi.org/10.1007/s10853-021-06225-1

    Article  Google Scholar 

  59. Angell CL, Lewis IC (1978) Raman spectroscopy of mesophase pitches. Carbon N Y 16(6):431–432. https://doi.org/10.1016/0008-6223(78)90088-X

    Article  CAS  Google Scholar 

  60. Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O (2006) A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon N Y 44(15):3239–3246. https://doi.org/10.1016/j.carbon.2006.06.029

    Article  CAS  Google Scholar 

  61. Sha Y, Liu W, Li Y, Cao W (2019) Formation mechanism of skin-core chemical structure within stabilized polyacrylonitrile monofilaments. Nanoscale Res Lett. https://doi.org/10.1186/s11671-019-2926-x

    Article  PubMed  PubMed Central  Google Scholar 

  62. Peebles LH, Huffman MW (1971) Thermal degradation of nylon. J Polym Sci Part A-1 Polym Chem 948:943–948. https://doi.org/10.1002/pol.1971.150090703

    Article  Google Scholar 

  63. Islam F, Joannès S, Bucknell S, Leray Y, Bunsell A, Laiarinandrasana L (2020) Investigation of tensile strength and dimensional variation of T700 carbon fibres using an improved experimental setup. J Reinf Plast Compos 39(3–4):144–162. https://doi.org/10.1177/0731684419873712

    Article  CAS  Google Scholar 

  64. Liu W, Wang M, Xing Z, Qi Y, Wu G (2012) Radiation-induced crosslinking of polyacrylonitrile fibers and the subsequent regulative effect on the preoxidation process. Radiat Phys Chem 81(6):622–627. https://doi.org/10.1016/j.radphyschem.2012.02.029

    Article  CAS  Google Scholar 

  65. Morales MS, Ogale AA (2013) UV-induced crosslinking and cyclization of solution-cast polyacrylonitrile copolymer. J Appl Polym Sci 128(3):2081–2088. https://doi.org/10.1002/app.38398

    Article  CAS  Google Scholar 

  66. Xiao H, Lu Y, Zhao W, Qin X (2014) A comparison of the effect of hot stretching on microstructures and properties of polyacrylonitrile and rayon-based carbon fibers. J Mater Sci 49(14):5017–5029. https://doi.org/10.1007/s10853-014-8206-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was made possible through support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, Award Number DE-EE0008195. The authors would like to thank Hills, Inc. for melt-spinning the PA6 fibers used in this study. The authors acknowledge that access to the SEM, EDS, TEM, and XRD in this research was provided by the Nanoscale Materials Characterization Facility at the University of Virginia. TGA was performed by Patrick McCormack, a member of Dr. Geoffrey Geise’s group (Department of Chemical Engineering, University of Virginia). Confocal Raman spectroscopy was conducted as part of a user project at the Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

Cole Love-Baker: Writing – original draft, data acquisition, data analysis. Timothy M Harrell: Writing – review and editing, data analysis. Alexander Scherschel: Writing – review and editing, data analysis. Zan Gao: Writing – review and editing, data acquisition. Ningning Song: Writing – review and editing, data acquisition. Kenneth R Brown: Writing – original draft, Writing – review and editing. Frederic Vautard: Writing – review and editing, data analysis. Ilia Ivanov: Writing – review and editing, data acquisition, data analysis. James Klett: Writing – review and editing, funding acquisition. Xiaodong Li: Writing – review and editing, funding acquisition.

Corresponding author

Correspondence to Xiaodong Li.

Ethics declarations

Ethics approval

No ethical approval was necessary for this manuscript as it does not involve human or animal subjects. All authors have consented to the publication of this manuscript.

Conflicts of interest

The authors declare no conflicts of interest with the research presented in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Love-Baker, C.A., Harrell, T.M., Scherschel, A. et al. Unveiling the microstructural evolution of carbon fibers derived from polyamide-6. J Polym Res 30, 72 (2023). https://doi.org/10.1007/s10965-023-03455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03455-6

Keywords

Navigation