Skip to main content
Log in

Investigation of the polymorphs and hydrolysis of uranium trioxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work focuses on the polymorphic nature of the UO3 and UO3–H2O system, which are important materials associated with the nuclear fuel cycle. The UO3–water system is complex and has not been fully characterized, even though these species are key fuel cycle materials. Powder X-ray diffraction, and Raman and fluorescence spectroscopies were used to characterize both the several polymorphic forms of UO3 and the certain UO3-hydrolysis products for the purpose of developing predictive capabilities and estimating process history; for example, polymorphic phases of unknown origin. Specifically, we have investigated three industrially relevant production pathways of UO3 and discovered a previously unknown low temperature route to the production of β-UO3. Several phases of UO3, its hydrolysis products, and key starting materials were synthesized and characterized as pure materials to establish optical spectroscopic signatures for these compounds for forensic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benedict M, Pigford TH, Levi HW (1981) Nuclear chemical engineering, 2nd edn. McGraw-Hill, USA

    Google Scholar 

  2. Debets PC (1966) Acta Crystallogr 21:589–593

    Article  CAS  Google Scholar 

  3. Wheeler VJ, Dell RM, Wait E (1964) J Inorg Nucl Chem 26(11):1829–1845

    Article  CAS  Google Scholar 

  4. Johnson TJ, Profeta LTM, Sams RL, Griffith DWT, Yokelson RL (2010) Vib Spectrosc 53(1):97–102

    Article  CAS  Google Scholar 

  5. Sadtler A series of commercially available spectroscopic databases distributed at www.knowitall.com/literature Bio-Rad

  6. Aldrich Library of FT-IR Spectra, 2nd edn, 3-volume set (1997). Sigma-Aldrich Chemical Co., Milwaukee, WI

  7. Johnson TJ, Su Y-F, Jarman KH, Kunkel BM, Birnbaum JC, Joly AG, Stephan EG, Tonkyn RG, Ewing RG, Dunham GC (2012) Int J Spectrosc 2012:297056

  8. Grenthe I, Drożdżyński J, Fujino T, Buck EC, Albrecht-Schmitt TE, Wolf SF (2011) Uranium* the chemistry of the actinide and transactinide elements. In: Morss LR, Edelstein NM, Fuger J (eds). Springer, Netherlands, pp 253-698. doi: 10.1007/978-94-007-0211-0_5

  9. Hoekstra HR, Siegel S (1961) J Inorg Nucl Chem 18:154–165

    Article  CAS  Google Scholar 

  10. Cordfunke EHP, Van Der Giessen AA (1963) J Inorg Nucl Chem 25(5):553–555

    Article  CAS  Google Scholar 

  11. Eary L, Cathles L (1983) Metall Mater Trans B 14(3):325–334

    Article  Google Scholar 

  12. Hastings EP, Lewis C, FitzPatrick J, Rademacher D, Tandon L (2008) J Radioanal Nucl Chem 276:475–481

    Article  CAS  Google Scholar 

  13. Graziani R, Bombieri G, Forsellini E (1972) J Chem Soc, Dalton Trans 19:2059–2061

    Article  Google Scholar 

  14. Weller MT, Light ME, Gelbrich T (2000) Acta Crystallogr Sect B 56(4):577–583

    Article  CAS  Google Scholar 

  15. Engmann R, Wolff PMD (1963) Acta Crystallogr 16(10):993

    Article  CAS  Google Scholar 

  16. Armstrong DP, Jarabek RJ, Fletcher WH (1989) Appl Spectrosc 43(3):461–468

    Article  CAS  Google Scholar 

  17. Taylor P, Wood DD, Duclos AM, Owen DG (1989) J Nucl Mater 168(1–2):70–75

    Article  CAS  Google Scholar 

  18. Finch RJ, Hawthorne FC, Ewing RC (1998) Can Mineral 36:831–845

    CAS  Google Scholar 

  19. Hoekstra HR, Siegel S (1973) J Inorg Nucl Chem 35(3):761–779

    Article  CAS  Google Scholar 

  20. Gal M, Goggin PL, Mink J (1992) Spectrochim Acta, Part A: Mol Spectrosc 48(1):121–132

    Article  Google Scholar 

  21. McGlynn SP, Smith JK (1961) J Mol Spectrosc 6:164–187

    Article  CAS  Google Scholar 

  22. Frost RL, Palmer SJ, Reddy BJ (2011) J Raman Spectrosc 42(5):1160–1162

    Article  CAS  Google Scholar 

  23. Hoekstra HR (1963) Inorg Chem 2(3):492–495

    Article  CAS  Google Scholar 

  24. Frost RL, Weier ML, Čejka J, Ayoko GA (2006) Spectrochim Acta, Part A 65 (3‚Äì4):529–534

    Google Scholar 

  25. Kips AJPR, Houlton MR, Leenaers A, Mace JD, Marie O, Pointurier F, Stefaniak EA, Taylor PDP, Van den Berghe S, Van Espen P, Van Grieken R, Wellum R (2009) Spectrochim Acta, Part B 64:199–207

    Google Scholar 

  26. Gabelnick SD, Reedy GT, Chasanov MG (1973) J Chem Phys 59(12):6397–6404

    Article  CAS  Google Scholar 

  27. 4.2 Tv (2009) Software for powder X-ray diffraction pattern analysis: Bruker AXS

  28. Burns PC, Hughes KA (2003) Am Mineral 88:1165–1168

    CAS  Google Scholar 

  29. Greaves C, Fender BEF (1972) Acta Crystallogr Sect B: Struct Sci 28(DEC15):3609–3614

    CAS  Google Scholar 

  30. Kim BH, Lee YB, Prelas MA, Ghosh TK (2012) J Radioanal Nucl Chem 292:1075–1083 Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved

    Article  CAS  Google Scholar 

  31. Hoekstra HR, Siegel S (1958) J Inorg Nucl Chem 7(1–2):174–175

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Technical Nuclear Forensics Center (NFNFC, a department of the U.S. Department of Homeland Security), and was co-funded by NA-22 in the National Nuclear Security Administration/Office of Nonproliferation & Verification Research and Development. The work was conducted at the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. We thank our sponsors for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas E. Sweet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweet, L.E., Blake, T.A., Henager, C.H. et al. Investigation of the polymorphs and hydrolysis of uranium trioxide. J Radioanal Nucl Chem 296, 105–110 (2013). https://doi.org/10.1007/s10967-012-2063-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2063-9

Keywords

Navigation