Skip to main content
Log in

Design and investigation of a continuous radon monitoring network for earthquake precursory process in Great Tehran

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 10 June 2014

Abstract

Earthquakes usually occur after some preliminary anomalies in the physical and chemical characteristics of environment and earth interior. Construction of the models which can explain these anomalies, prompt scientists to monitor geophysical and geochemical characteristics in the seismic areas for earthquake prediction. A review of studies has been done so far, denoted that radon gas shows more sensitivity than other geo-gas as a precursor. Based on previous researches, radon is a short-term precursor of earthquake from time point of view. There are equal experimental equations about the relation between earthquake magnitude and its effective distance on radon concentration variations. In this work, an algorithm based on Dobrovolsky equation \( (D = 10^{0.43M} ) \) with defining the Expectation and Investigation circles for great Tehran has been used. Radon concentration was measured with RAD7 detector in the more than 40 springs. Concentration of radon in spring, spring discharge, water temperature and the closeness of spring location to active faults, have been considered as the significant factors to select the best spring for a radon continuous monitoring site implementation. According to these factors, thirteen springs have been selected as follow: Bayjan, Mahallat-Hotel, Avaj, Aala, Larijan, Delir, Lavij, Ramsar, Semnan, Lavieh, Legahi, Kooteh-Koomeh and Sarein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. International Association of Seismology and Physics of the Earth's Interior (www.iaspei.org).

  2. Tehran, Mazandaran, Ardebil, Markazi, Zanjan, Semnan & Gilan.

  3. The study region is full of different type faults (Dip slip, strike slip and oblique slip faults/Normal and Reverse faults/High angle and low angle faults/and any other classification of faults). But the above descriptions of faults are only based on seismicity rate of each one during the time and other factors of faults were not studied.

  4. International Institute of Earthquake Engineering & Seismology (www.iiees.ac.ir).

References

  1. Lay T, Wallace TC (1995) Modern global seismology, vol 58. Elsevier, Amsterdam

    Google Scholar 

  2. Chopra AK (1995) Dynamics of structures: theory and applications to earthquake engineering, vol 2. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  3. Shearer PM (2009) Introduction to seismology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Kramer SL (1996) Geotechnical earthquake engineering. Pearson Education, Delhi, India

    Google Scholar 

  5. Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Igarashi G, Saeki S, Takahata N, Sumikawa K, Tasaka S, Sasaki Y, Takahashi M, Sano Y (1995) Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269:60–61

    Article  CAS  Google Scholar 

  7. Wakita H, Nakamura Y, Notsu K, Noguchi M, Asada T (1980) Radon anomaly: a possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science 207(4433):882–883

    Article  CAS  Google Scholar 

  8. Scholz CH, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis. Science 181(4102):803–810

    Article  CAS  Google Scholar 

  9. Fan K, Kuo T, Han Y, Chen C, Lin C, Lee C (2007) Radon distribution in a gasoline-contaminated aquifer. Radiat Meas 42(3):479–485. doi:10.1016/j.radmeas.2006.12.012

    Article  CAS  Google Scholar 

  10. Nikolopoulos D, Vogiannis E, Petraki E, Zisos A, Louizi A (2010) Investigation of the exposure to radon and progeny in the thermal spas of Loutraki (Attica-Greece): results from measurements and modelling. Sci Total Environ 408(3):495–504. doi:10.1016/j.scitotenv.2009.09.057

    Article  CAS  Google Scholar 

  11. King CY (1986) Gas geochemistry applied to earthquake prediction: an overview. J Geophys Res 91(B12):12269–12281

    Article  Google Scholar 

  12. Noguchi M, Wakita H (1977) A method for continuous measurement of radon in groundwater for earthquake prediction. J Geophys Res 82(8):1353–1357

    Article  CAS  Google Scholar 

  13. Namvaran M, Negarestani A (2013) Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). J Radioanalyt Nucl Chem 298:1–8

    Article  CAS  Google Scholar 

  14. Namvaran M, Negarestani A (2013) Measurement of soluble radon in Jooshan spa (se of Iran) and study its performance in earthquake forecasting process. Romanian J Phys 58(3–4):373–382

    CAS  Google Scholar 

  15. Kagan YY, Jackson DD (1991) Long-term earthquake clustering. Geophys J Int 104(1):117–133

    Article  Google Scholar 

  16. Hashemi SM, Negarestani A, Namvaran M, Musavi Nasab S (2013) An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes. J Radioanalyt Nuclear Chem 295(3):2249–2262. doi:10.1007/s10967-012-2310-0

  17. Gansser A (1955) New aspects of the geology in Central Iran. In: Fourth world petroleum congress, section I/A/5. Reprint 2, pp 280–300

  18. McKenzie D (1978) Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions. Geophys J Roy Astron Soc 55(1):217–254. doi:10.1111/j.1365-246X.1978.tb04759.x

    Article  Google Scholar 

  19. Robert Engdahl E, Jackson JA, Myers SC, Bergman EA, Priestley K (2006) Relocation and assessment of seismicity in the Iran region. Geophys J Int 167(2):761–778

    Article  Google Scholar 

  20. Berberian M, Yeats RS (1999) Patterns of historical earthquake rupture in the Iranian Plateau. Bull Seismol Soc Am 89(1):120–139

    Google Scholar 

  21. De Martini P, Hessami K, Pantosti D, D’Addezio G, Alinaghi H, Ghafory-Ashtiani M (1998) A geologic contribution to the evaluation of the seismic potential of the Kahrizak fault (Tehran, Iran). Tectonophysics 287(1):187–199

    Article  Google Scholar 

  22. Bozorgnia F (1973) Paleozoic foraminiferal biostratigraphy of central and east Alborz Mountains, Iran, vol 4. National Iranian Oil Company, Tehran

    Google Scholar 

  23. Ashtari M, Hatzfeld D, Kamalian N (2005) Microseismicity in the region of Tehran. Tectonophysics 395(3):193–208

    Article  Google Scholar 

  24. Ritz J-F, Nazari H, Ghassemi A, Salamati R, Shafei A, Solaymani S, Vernant P (2006) Active transtension inside central Alborz: a new insight into northern Iran–southern Caspian geodynamics. Geology 34(6):477–480

    Article  Google Scholar 

  25. Allen M, Ghassemi M, Shahrabi M, Qorashi M (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. J Struct Geol 25(5):659–672

    Article  Google Scholar 

  26. Ritz J, Balescu S, Soleymani S, Abbassi M, Nazari H, Feghhi K, Shabanian E, Tabassi H, Farbod Y, Lamothe M (2003) Determining the long-term slip rate along the Mosha Fault, Central Alborz, Iran. Implications in terms of seismic activity. In: Proceeding of the 4th international conference on seismology and earthquake engineering

  27. Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88(3):722–743

    Google Scholar 

  28. Ambraseys NN, Melville CP (2005) A history of Persian earthquakes. Cambridge University Press, Cambridge

    Google Scholar 

  29. Negarestani A, Setayeshi S, Ghannadi-Maragheh M, Akashe B (2002) Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction. J Environ Radioact 62(3):225–233

    Article  CAS  Google Scholar 

  30. Porstendörfer J, Butterweck G, Reineking A (1991) Diurnal variation of the concentrations of radon and its short-lived daughters in the atmosphere near the ground. Atmospheric Environ A 25(3):709–713

    Article  Google Scholar 

  31. Shapiro M, Rice A, Mendenhall M, Melvin J, Tombrello T (1984) Recognition of environmentally caused variations in radon time series. Pure Appl Geophys 122(2–4):309–326

    CAS  Google Scholar 

  32. Schubert M, Schulz H (2002) Diurnal radon variations in the upper soil layers and at the soil-air interface related to meteorological parameters. Health Phys 83(1):91–96

    Article  CAS  Google Scholar 

  33. Mattsson R (1970) Seasonal variation of short-lived radon progeny, Pb210 and Po210, in ground level air in Finland. J Geophys Res 75(9):1741–1744

    Article  CAS  Google Scholar 

  34. Sherwood R (1976) Ostwald solubility coefficients of some industrially important substances. Br J Ind Med 33(2):106–107

    CAS  Google Scholar 

  35. Steward A, Allott P, Cowles A, Mapleson W (1973) Solubility coefficients for inhaled anaesthetics for water, oil and biological media. Br J Anaesth 45(3):282–293

    Article  CAS  Google Scholar 

  36. Nussbaum E, Harsh JB (1958) Radon solubility in fatty acids and triglycerides. J Phys Chem 62(1):81–84

    Article  CAS  Google Scholar 

  37. Dobrovolsky I, Zubkov S, Miachkin V (1979) Estimation of the size of earthquake preparation zones. Pure Appl Geophys 117(5):1025–1044

    Article  Google Scholar 

  38. Musavi Nasab SM, Negarestani A, Mohammadi S (2011) Modeling of the radon exhalation from water to air by a hybrid electrical circuit. J Radioanal Nucl Chem 288(3):813–818. doi:10.1007/s10967-011-1003-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Negarestani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negarestani, A., Namvaran, M., Shahpasandzadeh, M. et al. Design and investigation of a continuous radon monitoring network for earthquake precursory process in Great Tehran. J Radioanal Nucl Chem 300, 757–767 (2014). https://doi.org/10.1007/s10967-014-3020-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3020-6

Keywords

Navigation