Skip to main content
Log in

Thermal decomposition of Australian uranium ore concentrates: characterisation of speciation and morphological changes following thermogravimetric analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this manuscript, we report the analysis of eight uranium ore concentrates (UOCs) from three operating Australian uranium mines using thermogravimetric analysis to investigate whether the thermal decomposition of these UOCs can be used to differentiate between sources. Micro-Raman spectroscopy and X-ray diffraction were also used to identify the different phases present within the original UOC material, as well as chart their decomposition with the increasing temperature. UOCs of different species were able to be differentiated from one another, while the moisture content, a variable component within the UOCs, did distinguish between U3O8 samples sourced from Ranger and Olympic Dam. The effect of elevated temperatures on the diverse UOC morphologies of the three UOCs was also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. VERTIC (2012) Illicit trafficking of nuclear and other radioactive material: the legislative response. London

  2. IAEA (2015) Incidents of nuclear and other radioactive material out of regulatory control—2015 Fact Sheet IAEA, Vienna

  3. Mayer K (2013) Expand nuclear forensics. Nature 503:461–462

    Article  Google Scholar 

  4. Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113(1):884–900

    Article  CAS  Google Scholar 

  5. Varga Z, Ozturk B, Meppen M, Mayer K, Wallenius M, Apostolidis C (2011) Characterisation and classification of uranium ore concentrates (yellow cakes) using infrared spectrometry. Radiochim Acta 99:807–813

    Article  CAS  Google Scholar 

  6. Varga Z, Katona R, Stefanka Z, Wallenius M, Mayer K, Nicholl A (2010) Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. Talanta 80(1):1744–1749

    Article  CAS  Google Scholar 

  7. Varga Z, Wallenius M, Mayer K (2010) Origin assessment of uranium ore concentrates based on their rare-earth elemental impurity pattern. Radiochim Acta 98:771–778

    Article  CAS  Google Scholar 

  8. Varga Z, Wallenius M, Mayer K, Keegan E, Millet S (2009) Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates. Anal Chem 81:8327–8334

    Article  CAS  Google Scholar 

  9. Keegan E, Richter S, Kelly I, Wong H, Gadd P, Kuehn H, Alonso-Munoz A (2008) The provenance of Australian uranium ore concentrates by elemental and isotopic analysis. Appl Geochem 23(4):765–777

    Article  CAS  Google Scholar 

  10. Krajko J, Varga Z, Yalcintas E, Wallenius M, Mayer K (2014) Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates. Talanta 129:499–504. doi:10.1016/j.talanta.2014.06.022

    Article  CAS  Google Scholar 

  11. Keegan E, Wallenius M, Mayer K, Varga Z, Rasmussen G (2012) Attribution of uranium ore concentrates using elemental and anionic data. Appl Geochem 27(1):1600–1609

    Article  CAS  Google Scholar 

  12. Kennedy AK, Bostick DA, Hexel CR, Smith RR, Giaquinto JM (2013) Non-volatile organic analysis of uranium ore concentrates. J Radioanal Nucl Chem 296:817–821

  13. Klunder G, Plaue J, Spackman P (2013) Application of visible/near-infrared reflectance spectroscopy to uranium ore concentrates for nuclear forensic analysis and attribution. Appl Spectrosc 67(9):1049–1056

    Article  CAS  Google Scholar 

  14. Plaue J, Klunder G, Hutcheon I (2013) Near intrared reflectance spectroscopy as a process signature in uranium oxides. J Radioanal Nucl Chem 296(1):551–555

    Article  CAS  Google Scholar 

  15. Lin DHM, Manara D, Varga Z, Berlizov A, Fanghanel T, Mayer K (2013) Applicability of Raman spectroscopy as a tool in nuclear forensics for analysis of uranium ore concentrates. Radiochim Acta 101(12):779–784. doi:10.1524/ract.2013.2110

    Article  CAS  Google Scholar 

  16. Han S-H, Varga Z, Krajko J, Wallenius M, Song K, Mayer K (2013) Measurement of the sulphur isotope ratio (34S/32S) in the uranium ore concentrates (yellowcakes) for origin assessment. J Anal At Spectrosc 28:1919–1925

    Article  CAS  Google Scholar 

  17. Manna S, Karthik P, Mukherjee A, Banerjee J, Roy SB, Joshi JB (2012) Study of calcinations of ammonium diuranate at different temperatures. J Nucl Mater 426(1–3):229–232. doi:10.1016/j.jnucmat.2012.03.035

    Article  CAS  Google Scholar 

  18. Woolfrey JL (1974) Surface area changes during the calcination of ammonium uranate. Australian Atomic Energy Commission, Lucas Heights

    Google Scholar 

  19. Raje N, Ghonge DK, Rao G, Reddy AVR (2013) Impurity characterization of magnesium diuranate using simultaneous TG-DTA-FTIR measurements. J Nucl Mater 436(1–3):40–46. doi:10.1016/j.jnucmat.2013.01.289

    Article  CAS  Google Scholar 

  20. Sato T (1976) Thermal-decomposition of uranium peroxide hydrates. J Appl Chem Biotech 26(4):107–213

    Article  Google Scholar 

  21. Eloirdi R, Lin DHM, Mayer K, Caciuffo R, Fanghanel T (2014) Investigation of ammonium diuranate calcination with high-temperature X-ray diffraction. J Mater Sci 49(24):8436–8443. doi:10.1007/s10853-014-8553-0

    Article  CAS  Google Scholar 

  22. Wotherspoon A, Vance L, Davis J, Hester D, Gregg D, Griffiths G, Karatchevtseva I, Zhang Y, Palmer T, Keegan E, Blagojevic N, Loi E, Hill D, Reinhard M (2014) Investigating macro- and micro-scale materials provenancing signatures in uranium ore concentrates/yellowcake. Paper presented at the International Conference on Advances in Nuclear Forensics: Countering the Evolving Threat of Nuclear and other Radioactive Material out of Regulatory Control. Vienna, Austria

  23. Marten H (2006) Environmental management and optimization of in-situ leaching at Beverley. In: Uranium in the Environment: Mining Impact and Consequences. Springer, Berlin. doi:10.1007/3-540-28367-6_54

  24. ERA (2013) Uranium processing at Ranger—information sheet. Darwin

  25. IAEA (1993) Uranium extraction technology. Technical report series, vol 359. Vienna

  26. McKay AD, Miezitis Y (2001) Australia’s uranium resources, geology and development of deposits mineral resources report 1

  27. Yahia M, ElFekey S, ElRazek A (1996) The impact of ammonium and nitrate impurities on the formation of uranium oxides, in the composition range UO3–U3O8-z, during thermal decomposition of ammonium uranates. Radiochim Acta 72(4):205–208

    Article  CAS  Google Scholar 

  28. Sato T (1963) Preparation of uranium peroxide hydrates. J Appl Chem 13(8):361–365. doi:10.1002/jctb.5010130807

    Article  CAS  Google Scholar 

  29. Thein SM, Bereolos PJ (2000) Thermal stabilisation of 233-UO2, 233-UO3 and 233-U3O8. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  30. Hoekstra HR, Siegel S (1961) The uranium-oxygen system: U3O8–UO3. J Inorg Nucl Chem 18:154–165. doi:10.1016/0022-1902(61)80383-7

    Article  CAS  Google Scholar 

  31. Sweet L, Reilly D, Abrecht D, Buck E, Meiser D (2013) Spectroscopic studies of the several isomers of UO3. Pacific Northwest National Laboratory, Richland

    Book  Google Scholar 

Download references

Acknowledgments

The authors would also like to acknowledge the financial assistance provided by the Australian Institute of Nuclear Science and Engineering Research Grant (15011) and the Australian Institute of Nuclear Science and Engineering Research Fellowship (Popelka-Filcoff). The authors would like to thank Dr Jonathan Campbell, Dr Cameron Shearer, Dr Ashley Slattery (Flinders University) and Dr Gordon Thorogood (ANSTO) for their assistance, as well as acknowledge the facilities of the Australian Microscopy and Microanalysis Research Facility at the School of Chemical and Physical Sciences, Flinders University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim G. Ditcham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ditcham, T., Wotherspoon, A., Kirkbride, K. et al. Thermal decomposition of Australian uranium ore concentrates: characterisation of speciation and morphological changes following thermogravimetric analysis. J Radioanal Nucl Chem 310, 725–732 (2016). https://doi.org/10.1007/s10967-016-4871-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4871-9

Keywords

Navigation