Skip to main content
Log in

Gamma ray attenuation of hafnium dioxide- and tungsten trioxide-epoxy resin composites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Composites containing WO3 or HfO2 nanoparticles were prepared and investigated as alternative shielding materials. Their performance was assessed using radioactive sources emitting photons with energies between 122 and 1407 keV. At 122 keV, the mass attenuation coefficient of the nanocomposites was five times greater to that of the epoxy matrix, and it gradually decreased with increasing energy. An enhancement in the mass attenuation coefficient of the polymer between 15% and 50% was observed at E > 1 MeV when adding the nanoparticles. These results support the development of lightweight garments for radiological application made of nanomaterials and polymeric matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cacuci DG (2010) Handbook of nuclear engineering, vol 1. Springer

  2. Rezaei-Ochbelagh D, Azimkhani S (2012) Investigation of gamma-ray shielding properties of concrete containing different percentages of lead. Appl Radiat Isot 70(10):2282–2286. https://doi.org/10.1016/j.apradiso.2012.06.020

    Article  CAS  PubMed  Google Scholar 

  3. Erdem M, Baykara O, Doğru M, Kuluöztürk F (2010) A novel shielding material prepared from solid waste containing lead for gamma ray. Radiat Phys Chem 79(9):917–922. https://doi.org/10.1016/j.radphyschem.2010.04.009

    Article  CAS  Google Scholar 

  4. Harish V, Nagaiah N, Prabhu TN, Varughese KT (2009) Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications. J Appl Polym Sci 112(3):1503–1508. https://doi.org/10.1002/app.29633

    Article  CAS  Google Scholar 

  5. Huang W, Yang W, Ma Q, Wu J, Fan J, Zhang K (2016) Preparation and characterization of γ-ray radiation shielding PbWO4/EPDM composite. J Radioanal Nucl Chem 309(3):1097–1103. https://doi.org/10.1007/s10967-016-4713-9

    Article  CAS  Google Scholar 

  6. McCaffrey JP, Shen H, Downton B, Mainegra-Hing E (2007) Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med Phys 34(2):530–537. https://doi.org/10.1118/1.2426404

    Article  CAS  PubMed  Google Scholar 

  7. Şakar E, Büyükyıldız M, Alım B, Şakar BC, Kurudirek M (2019) Leaded brass alloys for gamma-ray shielding applications. Radiat Phys Chem 159:64–69. https://doi.org/10.1016/j.radphyschem.2019.02.042

    Article  CAS  Google Scholar 

  8. Akkurt I, Akyildirim H, Mavi B, Kilincarslan S, Basyigit C (2010) Gamma-ray shielding properties of concrete including barite at different energies. Prog Nucl Energy 52(7):620–623. https://doi.org/10.1016/j.pnucene.2010.04.006

    Article  CAS  Google Scholar 

  9. Alwaeli M (2017) Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes. J Clean Prod 166:157–162. https://doi.org/10.1016/j.jclepro.2017.07.203

    Article  CAS  Google Scholar 

  10. Kaspar William YX, Naus Dan, Graves Herman L III (2013) A review of the effects of radiation on microstructure and properties of concretes used in nuclear power plants. Nuclear Regulatory Commission, Rockville

    Google Scholar 

  11. Pomaro B, Gramegna F, Cherubini R, De Nadal V, Salomoni V, Faleschini F (2019) Gamma-ray shielding properties of heavyweight concrete with electric arc Furnace slag as aggregate: an experimental and numerical study. Constr Build Mater 200:188–197. https://doi.org/10.1016/j.conbuildmat.2018.12.098

    Article  CAS  Google Scholar 

  12. Horszczaruk E, Brzozowski P (2019) Investigation of gamma ray shielding efficiency and physicomechanical performances of heavyweight concrete subjected to high temperature. Constr Build Mater 195:574–582. https://doi.org/10.1016/j.conbuildmat.2018.09.113

    Article  CAS  Google Scholar 

  13. Yoshimura HR, Ludwigsen JS, McAllaster NM (1996) Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems. Sandia National Labs, Albuquerque

    Book  Google Scholar 

  14. Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Ye BJ, Kim BG, Jeon MJ, Kim SY, Hong YS (2015) Evaluation and management of lead exposure. Ann Occup Environ Med 27:30. https://doi.org/10.1186/s40557-015-0085-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaur T, Sharma J, Singh T (2019) Review on scope of metallic alloys in gamma rays shield designing. Prog Nucl Energy 113:95–113. https://doi.org/10.1016/j.pnucene.2019.01.016

    Article  CAS  Google Scholar 

  16. Singh VP, Badiger NM (2014) Gamma ray and neutron shielding properties of some alloy materials. Ann Nucl Energy 64:301–310. https://doi.org/10.1016/j.anucene.2013.10.003

    Article  CAS  Google Scholar 

  17. Shruti Nambiar EKO, Yeow John T W (2012) Polymer nanocomposite-based shielding against diagnostic X-rays. J Appl Polym Sci 45:50. https://doi.org/10.1002/app.37980

    Article  CAS  Google Scholar 

  18. Cao X, Xue X, Jiang T, Li Z, Ding Y, Li Y, Yang H (2010) Mechanical properties of UHMWPE/Sm2O3 composite shielding material. J Rare Earths 28:482–484. https://doi.org/10.1016/s1002-0721(10)60269-4

    Article  Google Scholar 

  19. Nambiar S, Yeow JT (2012) Polymer-composite materials for radiation protection. ACS Appl Mater Interfaces 4(11):5717–5726. https://doi.org/10.1021/am300783d

    Article  CAS  PubMed  Google Scholar 

  20. Singh VP, Badiger NM (2014) Investigation of gamma and neutron shielding parameters for borate glasses containing NiO and PbO. Phys Res Int 2014:1–7. https://doi.org/10.1155/2014/954958

    Article  CAS  Google Scholar 

  21. Chen S, Bourham M, Rabiei A (2015) Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams. Radiat Phys Chem 117:12–22. https://doi.org/10.1016/j.radphyschem.2015.07.003

    Article  CAS  Google Scholar 

  22. Wang P, Tang X, Chai H, Chen D, Qiu Y (2015) Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3 /polyimide gamma ray/neutron shielding material. Fusion Eng Des 101:218–225. https://doi.org/10.1016/j.fusengdes.2015.09.007

    Article  CAS  Google Scholar 

  23. Chai H, Tang X, Ni M, Chen F, Zhang Y, Chen D, Qiu Y (2016) Preparation and properties of novel, flexible, lead-free X-ray-shielding materials containing tungsten and bismuth(III) oxide. J Appl Polym Sci. https://doi.org/10.1002/app.43012

    Article  Google Scholar 

  24. Dubey KA, Chaudhari CV, Suman SK, Raje N, Mondal RK, Grover V, Murali S, Bhardwaj YK, Varshney L (2016) Synthesis of flexible polymeric shielding materials for soft gamma rays: physicomechanical and attenuation characteristics of radiation crosslinked polydimethylsiloxane/Bi2O3 composites. Polym Compos 37(3):756–762. https://doi.org/10.1002/pc.23232

    Article  CAS  Google Scholar 

  25. Fontainha CCP, Baptista Neto AT, Santos AP, Faria LOd (2016) P(VDF-TrFE)/ZrO2 polymer-composites for X-ray shielding. Mater Res 19(2):426–433. https://doi.org/10.1590/1980-5373-mr-2015-0576

    Article  CAS  Google Scholar 

  26. Li R, Gu Y, Wang Y, Yang Z, Li M, Zhang Z (2017) Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Mater Res Express 4(3):035035. https://doi.org/10.1088/2053-1591/aa6651

    Article  CAS  Google Scholar 

  27. Jamil M, Hazlan MH, Ramli RM, Noor Azman NZ (2019) Study of electrospun PVA-based concentrations nanofibre filled with Bi2O3 or WO3 as potential x-ray shielding material. Radiat Phys Chem 156:272–282. https://doi.org/10.1016/j.radphyschem.2018.11.018

    Article  CAS  Google Scholar 

  28. Halimah MK, Azuraida A, Ishak M, Hasnimulyati L (2019) Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. J Non-Cryst Solids 512:140–147. https://doi.org/10.1016/j.jnoncrysol.2019.03.004

    Article  CAS  Google Scholar 

  29. Wu Y, Zhang Q-P, Zhou D, Liu L-P, Xu Y-C, Xu D-G, Zhou Y-L (2017) One-dimensional lead borate nanowhiskers for the joint shielding of neutron and gamma radiation: controlled synthesis, microstructure, and performance evaluation. CrystEngComm 19(48):7260–7269. https://doi.org/10.1039/c7ce01547j

    Article  CAS  Google Scholar 

  30. Zhang W, Xiong H, Wang S, Li M, Gu Y, Li R (2016) Gamma-ray shielding performance of carbon nanotube film material. Mater Express 6(5):456–460. https://doi.org/10.1166/mex.2016.1326

    Article  CAS  Google Scholar 

  31. Dong Y, Chang S-Q, Zhang H-X, Ren C, Kang B, Dai M-Z, Dai Y-D (2012) Effects of WO3 particle size in WO3/epoxy resin radiation shielding material. Chin Phys Lett 29(10):108102. https://doi.org/10.1088/0256-307x/29/10/108102

    Article  Google Scholar 

  32. Kaloshkin SD, Tcherdyntsev VV, Gorshenkov MV, Gulbin VN, Kuznetsov SA (2012) Radiation-protective polymer-matrix nanostructured composites. J Alloy Compd 536:S522–S526. https://doi.org/10.1016/j.jallcom.2012.01.061

    Article  CAS  Google Scholar 

  33. Kim J, Seo D, Lee BC, Seo YS, Miller WH (2014) Nano-W dispersed gamma radiation shielding materials. Adv Eng Mater 16(9):1083–1089. https://doi.org/10.1002/adem.201400127

    Article  CAS  Google Scholar 

  34. Chang L, Zhang Y, Liu Y, Fang J, Luan W, Yang X, Zhang W (2015) Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl Instrum Methods Phys Res Sect B 356–357:88–93. https://doi.org/10.1016/j.nimb.2015.04.062

    Article  CAS  Google Scholar 

  35. Noor Azman NZ, Siddiqui SA, Hart R, Low IM (2013) Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide-epoxy composites. Appl Radiat Isot 71(1):62–67. https://doi.org/10.1016/j.apradiso.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  36. Huang Y, Zhang W, Liang L, Xu J, Chen Z (2013) A “Sandwich” type of neutron shielding composite filled with boron carbide reinforced by carbon fiber. Chem Eng J 220:143–150. https://doi.org/10.1016/j.cej.2013.01.059

    Article  CAS  Google Scholar 

  37. Shin JW, Lee J-W, Yu S, Baek BK, Hong JP, Seo Y, Kim WN, Hong SM, Koo CM (2014) Polyethylene/boron-containing composites for radiation shielding. Thermochim Acta 585:5–9. https://doi.org/10.1016/j.tca.2014.03.039

    Article  CAS  Google Scholar 

  38. İçelli O, Erzeneoǧlu S, Boncukçuoǧluc R (2003) Measurement of X-ray transmission factors of some boron compounds. Radiat Meas 37(6):613–616. https://doi.org/10.1016/s1350-4487(03)00049-0

    Article  Google Scholar 

  39. Hayashi T, Tobita K, Nakamori Y, Orimo S (2009) Advanced neutron shielding material using zirconium borohydride and zirconium hydride. J Nucl Mater 386–388:119–121. https://doi.org/10.1016/j.jnucmat.2008.12.073

    Article  CAS  Google Scholar 

  40. Kunzel R, Okuno E (2012) Effects of the particle sizes and concentrations on the X-ray absorption by CuO compounds. Appl Radiat Isot 70(4):781–784. https://doi.org/10.1016/j.apradiso.2011.12.040

    Article  CAS  PubMed  Google Scholar 

  41. Botelho MZ, Kunzel R, Okuno E, Levenhagen RS, Basegio T, Bergmann CP (2011) X-ray transmission through nanostructured and microstructured CuO materials. Appl Radiat Isot 69(2):527–530. https://doi.org/10.1016/j.apradiso.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  42. Badawy SM, Abd El-Latif AA (2015) Synthesis and characterizations of magnetite nanocomposite films for radiation shielding. Polym Compos. https://doi.org/10.1002/pc.23660

    Article  Google Scholar 

  43. Bedi P, Singh R, Ahuja IS (2018) A comprehensive study for 3D printing of rapid tooling from reinforced waste thermoplastics. In: Reference module in materials science and materials engineering. Elsevier, London. https://doi.org/10.1016/B978-0-12-803581-8.11495-X

    Google Scholar 

  44. Djouani F, Zahra Y, Fayolle B, Kuntz M, Verdu J (2013) Degradation of epoxy coatings under gamma irradiation. Radiat Phys Chem 82:54–62. https://doi.org/10.1016/j.radphyschem.2012.09.008

    Article  CAS  Google Scholar 

  45. Queiroz DPR, Fraïsse F, Fayolle B, Kuntz M, Verdu J (2010) Radiochemical ageing of epoxy coating for nuclear plants. Radiat Phys Chem 79(3):362–364. https://doi.org/10.1016/j.radphyschem.2009.08.034

    Article  CAS  Google Scholar 

  46. Shulman H, Ginell WS (1970) Nuclear and space radiation effects on materials. NASA

  47. Rouif S (2005) Radiation cross-linked polymers: Recent developments and new applications. Nucl Instrum Methods Phys Res Sect B 236(1–4):68–72. https://doi.org/10.1016/j.nimb.2005.03.252

    Article  CAS  Google Scholar 

  48. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  49. Haupert F, Wetzel B (2005) Reinforcement of thermosetting polymers by the incorporation of micro- and nanoparticles. In: Polymer composites: from nano- to macro-scale. Springer, Boston, pp 45–62. https://doi.org/10.1007/0-387-26213-x_3

  50. Tekin HO, Sayyed MI, Issa SAM (2018) Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat Phys Chem 150:95–100. https://doi.org/10.1016/j.radphyschem.2018.05.002

    Article  CAS  Google Scholar 

  51. Maggiorella L, Deutsch E, Bourhis J, Barouch G, Borghi E, Devaux C, Levy L (2012) Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol 8(9):1167–1181

    Article  CAS  Google Scholar 

  52. Jayaraman V, Bhavesh G, Chinnathambi S, Ganesan S, Aruna P (2014) Synthesis and characterization of hafnium oxide nanoparticles for bio-safety. Mater Express 4(5):375–383. https://doi.org/10.1166/mex.2014.1190

    Article  CAS  Google Scholar 

  53. Seeram E, Brennan PC (2016) Radiation protection in diagnostic X-ray imaging. Jones & Bartlett Learning, Burlington

    Google Scholar 

  54. Podgoršak EB (2010) Interactions of photons with matter. In: Radiation physics for medical physicists. Springer, Berlin, pp 277–375. https://doi.org/10.1007/978-3-642-00875-7_7

    Chapter  Google Scholar 

  55. Chang DS, Lasley FD, Das IJ, Mendonca MS, Dynlacht JR (2014) Characteristics of photon beams. In: Basic radiotherapy physics and biology. Springer, Cham, pp 69–76. https://doi.org/10.1007/978-3-319-06841-1_7

    Google Scholar 

  56. Wang Y, Zahid F, Wang J, Guo H (2012) Structure and dielectric properties of amorphous high-κoxides: HfO2, ZrO2, and their alloys. Phys Rev B 85(22):224110. https://doi.org/10.1103/physrevb.85.224110

    Article  Google Scholar 

  57. Mahmoud ME, El-Khatib AM, Badawi MS, Rashad AR, El-Sharkawy RM, Thabet AA (2018) Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat Phys Chem 145:160–173

    Article  CAS  Google Scholar 

  58. Nanoparticle- and nanofiber-based polymer nanocomposites: an overview. In: Spherical and fibrous filler composites, pp 1–38. https://doi.org/10.1002/9783527670222.ch1

    Google Scholar 

  59. Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11(11):4653–4682. https://doi.org/10.1039/c9nr00117d

    Article  CAS  PubMed  Google Scholar 

  60. Mahesh M (2002) The AAPM/RSNA physics tutorial for residents. Imaging Ther Technol 22(4):949–962

    Google Scholar 

  61. Sharanabasappa Kerur BR, Anilkumar S, Hanumaiah B (2010) Determination of X-ray mass attenuation coefficients using HPGe detector. Appl Radiat Isot 68(1):76–83. https://doi.org/10.1016/j.apradiso.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  62. Choppin G, Liljenzin J-O, Rydberg J, Ekberg C (2013) Absorpt Nucl Radiat. https://doi.org/10.1016/b978-0-12-405897-2.00007-0

    Article  Google Scholar 

  63. Singh VP, Badiger NM, Kucuk N (2014) Determination of effective atomic numbers using different methods for some low-Z materials. J Nucl Chem 2014:1–7. https://doi.org/10.1155/2014/725629

    Article  Google Scholar 

  64. Gerward L, Guilbert N, Jensen KB, Leving H (2004) WinXCom: a program for calculating X-ray attenuation coefficients. Radiat Phys Chem 71:653–654

    Article  CAS  Google Scholar 

  65. Hubbell JH, Seltzer SM (1995) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. National Institute of Standards and Technology-PL, Gaithersburg

    Book  Google Scholar 

  66. Ouda AS (2015) Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding. Prog Nucl Energy 79:48–55. https://doi.org/10.1016/j.pnucene.2014.11.009

    Article  CAS  Google Scholar 

  67. Kobayashi S, Hosoda N, Takashima R (1997) Tungsten alloys as radiation protection materials. Nucl Instrum Methods Phys Res Sect A 390(3):426–430

    Article  CAS  Google Scholar 

  68. Verdipoor K, Alemi A, Mesbahi A (2018) Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding. Radiat Phys Chem 147:85–90

    Article  CAS  Google Scholar 

  69. Badawy SM, Abd El-Latif A (2017) Synthesis and characterizations of magnetite nanocomposite films for radiation shielding. Polym Compos 38(5):974–980

    Article  CAS  Google Scholar 

  70. Kaur P, Singh K, Thakur S, Singh P, Bajwa B (2019) Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochim Acta Part A Mol Biomol Spectrosc 206:367–377

    Article  CAS  Google Scholar 

  71. Mesbahi A, Ghiasi H (2018) Shielding properties of the ordinary concrete loaded with micro-and nano-particles against neutron and gamma radiations. Appl Radiat Isot 136:27–31

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by Virginia Commonwealth University (VCU) with the support of the Mechanical and Nuclear Engineering Department and the NRC-HQ-84-14-FOA-002 faculty development program in radiation detection and health physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessika V. Rojas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina Higgins, M.C., Radcliffe, N.A., Toro-González, M. et al. Gamma ray attenuation of hafnium dioxide- and tungsten trioxide-epoxy resin composites. J Radioanal Nucl Chem 322, 707–716 (2019). https://doi.org/10.1007/s10967-019-06714-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06714-3

Keywords

Navigation