Skip to main content
Log in

Inline gamma-spectrometry of fission product elements after rapid high-pressure ion chromatographic separation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Analysis of irradiated material shortly after irradiation can be non-trivial due to highly radioactive activation and fission isotopes increasing dead time in gamma-ray detection systems, often requiring a “cooling-period” between receipt of a sample and the subsequent analysis. A direct separation–detection method has been developed combining ion chromatography and inductively coupled mass spectrometry for rapid, low-level analysis of fission products; it cannot, however, detect certain short-lived species below the detection limit of the system. Here we report the implementation of an inline gamma-ray detector, which was added post-separation, pre-analysis, to test the quality and utility of elementally-isolated gamma-ray spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. Burnett JL, Mueller WF, Milbrath BD (2017) Evaluation of gamma-spectrometry equipment for on-site inspection. J Radioanal Nucl Chem 312:377–383. https://doi.org/10.1007/s10967-017-5221-2

    Article  CAS  Google Scholar 

  2. Roach BD, Fenske EK, Glasgow DC et al (2019) Rapid concentration and isotopic measurements of ultra-trace 235U fission products with comparison to an ORIGEN isotope depletion model. Talanta 205:120079. https://doi.org/10.1016/j.talanta.2019.06.079

    Article  CAS  PubMed  Google Scholar 

  3. Reilly D, Ensslin N, Smith Jr H, Kreiner S (1991) Passive nondestructive assay of nuclear materials. United States Nuclear Regulatory Commission

  4. Carchon R, Moeslinger M, Bourva L et al (2007) Gamma radiation detectors for safeguards applications. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 579:380–383. https://doi.org/10.1016/j.nima.2007.04.086

    Article  CAS  Google Scholar 

  5. Lindstrom RM, Fleming RF (1995) Dead time, pileup, and accurate gamma-ray spectrometry. Radioact Radiochem 6:20–27

    CAS  Google Scholar 

  6. Ramebäck H, Lagerkvist P, Holmgren S et al (2016) On the accuracy of gamma spectrometric isotope ratio measurements of uranium. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 815:57–61. https://doi.org/10.1016/j.nima.2016.01.056

    Article  CAS  Google Scholar 

  7. Erlandson OR (1959) Redox in-line monitoring instruments information manual. Richland, WA

  8. Eappen KP, Sapra BK, Mayya YS (2007) A novel methodology for online measurement of thoron using Lucas scintillation cell. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 572:922–925. https://doi.org/10.1016/j.nima.2006.11.074

    Article  CAS  Google Scholar 

  9. Orton CR, Fraga CG, Christensen RN, Schwantes JM (2011) Proof of concept simulations of the multi-isotope process monitor: an online, nondestructive, near-real-time safeguards monitor for nuclear fuel reprocessing facilities. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 629:209–219. https://doi.org/10.1016/j.nima.2010.10.024

    Article  CAS  Google Scholar 

  10. Yasuda K, Usuda S, Gunji H (2000) Development of scintillation-light-transmission type phoswich detector for simultaneous alpha- and beta (gamma)-ray counting. IEEE Trans Nucl Sci 47:1337–1340. https://doi.org/10.1109/23.872974

    Article  CAS  Google Scholar 

  11. Vojtyla P (2001) Calibration of monitors used for surveillance of radioactivity in effluent water from CERN’s accelerator installations. Appl Radiat Isot 55:81–88. https://doi.org/10.1016/S0969-8043(00)00361-4

    Article  CAS  PubMed  Google Scholar 

  12. Guoxiu Q, Xu Y, Wang L et al (2017) Design of an on-line monitoring system for radioactive wastewater. J Radioanal Nucl Chem 314:215–220. https://doi.org/10.1007/s10967-017-5356-1

    Article  CAS  Google Scholar 

  13. Morley SM, Seiner B, Finn E et al (2015) Integrated separation scheme for measuring a suite of fission and activation products from a fresh mixed fission and activation product sample. J Radioanal Nucl Chem 304:509–515. https://doi.org/10.1007/s10967-014-3826-2

    Article  CAS  Google Scholar 

  14. Morrison SS, Clark SB, Eggemeyer TA et al (2017) Activation product analysis in a mixed sample containing both fission and neutron activation products. J Radioanal Nucl Chem 314:2501–2506. https://doi.org/10.1007/s10967-017-5563-9

    Article  CAS  Google Scholar 

  15. Brooker G, Terasaki WL, Price MG et al (1976) Gammaflow: a completely automated radioimmunoassay system. Science 194:270–276

    Article  CAS  Google Scholar 

  16. Wilshire FW, Lambert JP, Butler FE (1975) Rapid radiochemical separation of selected toxic elements in environmental samples prior to gamma ray spectrometry. Anal Chem 47:2399–2403. https://doi.org/10.1021/ac60364a010

    Article  CAS  PubMed  Google Scholar 

  17. Roach BD, Fenske EK, Ilgner RH et al (2018) Development of a fast and efficient analytical technique for the isotopic analysis of fission and actinide elements in environmental matrices. J Chromatogr A 1587:155–165. https://doi.org/10.1016/j.chroma.2018.12.029

    Article  CAS  PubMed  Google Scholar 

  18. Roach BD, Giaquinto JM, Keever TJ (2018) Integration of a hyphenated HPIC-ICPMS protocol for the measurement of transplutonium isotopic mass distributions for 252 Cf campaigns at Oak Ridge National Laboratory. J Radioanal Nucl Chem 318:407–413. https://doi.org/10.1007/s10967-018-6072-1

    Article  CAS  Google Scholar 

  19. Fenske EK, Roach BD, Glasgow DC et al (2019) Rapid measurements of U235 fission product isotope ratios using an online, high-pressure ion chromatography ICPMS protocol with comparison to isotopic depletion models. J Radioanal Nucl Chem 320:153–163. https://doi.org/10.1007/s10967-019-06438-4

    Article  CAS  Google Scholar 

  20. Hellesen C, Grape S, Jansson P et al (2017) Nuclear spent fuel parameter determination using multivariate analysis of fission product gamma spectra. Ann Nucl Energy 110:886–895. https://doi.org/10.1016/j.anucene.2017.07.035

    Article  CAS  Google Scholar 

  21. Hunn JD, Montgomery FC, Keever TJ, et al (2019) ORNL TM-2019-315: average burn-up in AGR-2 compacts 3-3-1, 3-3-2, 2-2-2, and 6-4-2

  22. Seibert RL, Jolly BC, Balooch M et al (2019) Production and characterization of TRISO fuel particles with multilayered SiC. J Nucl Mater 515:215–226. https://doi.org/10.1016/j.jnucmat.2018.12.024

    Article  CAS  Google Scholar 

  23. Montgomery FC, Hunn JD, Keever TJ, et al (2018) ORNL TM-2018/931: Measurement of average burnup in TRISO-coated particles from AGR-2 UCO compacts 2-2-2 and 6-4-2

  24. Depaoli D, Benker D, Delmau L, et al (2017) ORNL TM-2017/363: status summary of chemical processing development in plutonium-238 supply program

  25. IAEA (2019) IAEA nuclear data services. https://www-nds.iaea.org/

  26. LNHB Laboratoire National Henri Becquerel. https://www.nucleide.org/

Download references

Acknowledgements

This submission has been authored by a contractor of the U.S. Government under Contract No. DE AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for the U.S. Government purposes. This research was supported in part by an appointment to the Oak Ridge National Laboratory Post-Master’s Research Associate Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin D. Roach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://energy.gov/downloads/doe-public-access-plan).”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenske, E.K., Roach, B.D., Hexel, C.R. et al. Inline gamma-spectrometry of fission product elements after rapid high-pressure ion chromatographic separation. J Radioanal Nucl Chem 324, 759–771 (2020). https://doi.org/10.1007/s10967-020-07103-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07103-x

Keywords

Navigation