Skip to main content
Log in

X‐ray diffraction, differential scanning calorimetry and evolved gas analysis of aged plutonium tetrafluoride (PuF4)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A 30 year-old PuF4 sample consisting of brown powder (PuF4-b) and pink granules (PuF4-p) was analyzed. X-ray diffraction shows the bulk is comprised of three compounds: PuF4, PuO2, and PuF4·1.6H2O. Broadening of PuF4 XRD peaks suggests possible \(\upalpha\)-damage. After annealing at 650 °C, crystalline PuF4 and PuO2 remain. Thermogravimetric analysis and differential scanning calorimetry—with simultaneous evolved gas analysis—of the separated PuF4-p and PuF4-b components reveal a distinct sequence of reactions. Dehydration occurs between ~ 90 and 300 °C. Exothermic annealing of the \(\upalpha\)-damage occurs in two stages: at 350–355 °C and at 555–558 °C. Hydrofluoric acid, fluorine and helium desorb during the first exotherm. Above 700 °C, PuF4 reacts with PuO2, resulting in oxygen release and mass loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical and time limitations.

References

  1. Parker TG, Albrecht-Schmitt TE, Polinski MJ, Wang S, Diwu J (2019) In: Clark DL, Geeson DA, Hanrahan RJ (eds) The Plutonium Handbook, 2nd edn., vol 3, Ch. 19, 1419–1452, American Nuclear Society

  2. Clark DL, Hecker SS, Jarvinen GD, Neu MP (2011) In: Morss LR, Edelstein NM, Fuger J, Katz JJ (eds.) The Chemistry of the Actinide and Transactinide Elements, 4th edn., vol 2, 1264 p., Springer: Dordrecht, Netherlands

  3. McCoy KM, Casella A, Sinkov S, Sweet L, McNamara B, Delegard C, Jevremovic T (2017). J Nucl Mat. https://doi.org/10.1016/j.jnucmat.2017.08.005

    Article  Google Scholar 

  4. Baker RD (1946) Los Alamos National Laboratory Unclassified Report, LA-473, 65 p

  5. Conner WV (1966) Dow Chemical Company, Rocky Flats Division, RFP-728, 28 p.

  6. Johns IB, Moulton GH (1944) Los Alamos National Laboratory Unclassified Report, LA-193, 20 p.

  7. Johns IB (1945) Los Alamos National Laboratory Unclassified Report, LA-381, 11 p.

  8. Moser WS, Navratil JD (1984) J Less Common Metals 100:171–187

    Article  CAS  Google Scholar 

  9. Blankenship FF (1964) In: Molten salt reactor program semiannual progress Report, ORNL-3708, 252–287

  10. Beneš O, Konings RJM (2009) J Fluorine Chem 130:22–29

    Article  Google Scholar 

  11. Beneš O, Konings RJM (2012): Comp Nucl Mat, DOI https://doi.org/10.1016/B978-0-08-056033-5.00062-8

  12. Molten Salt Panel of the Committee on Remediation of Buried and Tank Wastes (1997) Margrave JL (Chair) National Research Council National Academies Press, 148 p.

  13. Peretz FJ, Rushton JE, Faulkner RL, Walker KL, DelCul GD (1998) ORNL-CP-98416, 9 p.

  14. Bamberger CE, Ross RG, Baes CF Jr (1971) J Inorg Nucl Chem 33:767–776

    Article  CAS  Google Scholar 

  15. Claquesin J, Lemoine O, Gibilaro M, Massot L, Chamelot P, Bourges G (2019). Electrochim Acta. https://doi.org/10.1016/j.electacta.2019.01.169

    Article  Google Scholar 

  16. Paget T, McNeese J, Fife K, Jackson JM, Watson R (2019) In: Clark DL, Geeson DA, Hanrahan RJ (eds.) The Plutonium Handbook, 2 edn., 1–6, 201–286

  17. Ensslin N (1991) In: Reilly D, Ensslin N, Smith Jr. H, Kreiner S (eds.) Passive nondestructive assay of nuclear materials, NUREG/CR-5550, LA-UR-90–0732

  18. Narlesky JE, Stroud MA, Smith PH, Wayne DM, Mason RE, Worl LA (2012) Los Alamos National Laboratory Unclassified Report, LA-UR-12–23790 (2012) 114 p.

  19. Tandon L (2000) Los Alamos National Laboratory Unclassified Report, LA-13725-MS (2000) 85 p.

  20. Clark DL, Funk DJ (2015) Los Alamos National Laboratory Unclassified Report, LA-UR-15–22393, 64 p.

  21. Smith DM, Neu MP, Garcia E, Morales LA (2000) Waste Manage 20:479–490

    Article  CAS  Google Scholar 

  22. Crowder ML, Duffey JM, Livingston RR, Scogin JH, Kessinger GF, Almond PM (2009) J Alloys Comp 488:565–567

    Article  CAS  Google Scholar 

  23. Wayne DM (2016) Los Alamos National Laboratory Unclassified Report, LA-UR-16–23438, 391 p.

  24. Wayne DM, White JT (2019) In: Clark DL, Geeson DA, Hanrahan RJ (eds.) The Plutonium Handbook, 2nd edn., 6–44, 3167–3200

  25. Colletti LP (2019) In: Clark DL, Geeson DA, Hanrahan RJ (eds.) The Plutonium Handbook, 2nd edn., 6–45, 3420–3434

  26. Hj M (1992) Nucl Inst Methods Phys Res B 65:30–39

    Article  Google Scholar 

  27. Ellsworth S, Navrotsky A, Ewing RC (1994) Phys Chem Mineral 21:140–149

    Article  CAS  Google Scholar 

  28. Farnan I, Cho H, Weber WJ (2007) Nature 445:190–193

    Article  CAS  Google Scholar 

  29. Wiss T, Hiernaut JP, Roudil D, Colle JY, Maugeri E, Talip Z, Janssen A, Rondinella V, Konings RJM, Matzke Hj, Weber WJ (2014) J Nucl Mat 451, 198–206

  30. Simeone D, Costantini JM, Luneville L, Desgranges L, Trocellier P, Garcia P (2015) J Mater Res 30:1495–1515

    Article  CAS  Google Scholar 

  31. Weber WJ, Wald JW, Matzke Hj (1985) Mat Res Soc Symp Proc 44, 679–686

  32. Wronkiewicz DJ (1993) In: MRS Proceedings, Scientific Basis for Nuclear Waste Management, DOI https://doi.org/10.1557/PROC-333-083

  33. Bower WR, Pearce CI, Droop GTR, Mosselmans JFW, Geraki K, Pattrick RAD (2015) Mineral Mag DOI https://doi.org/10.1180/minmag.2015.079.6.20

  34. Lumpkin GR (2001) J Nucl Mat 289:136–166

    Article  CAS  Google Scholar 

  35. Groote JC, Seinen J, Weerkamp JRW, Den Hartog HW (1991), Rad Eff Def Solids, DOI https://doi.org/10.1080/10420159108220844

  36. Dubinko VI, Turkin AA, Vainshtein DI, den Hartog HW (1999). J Appl Phys. https://doi.org/10.1063/1.371639

    Article  Google Scholar 

  37. den Hartog HW, Vainshtein DI, Dubinko VI, Turkin AA (2002) Nucl Inst Methods Phys Res B 191:168–172

    Article  Google Scholar 

  38. Exarhos GJ (1982) J Phys Chem 86:4020–4025

    Article  CAS  Google Scholar 

  39. Luo JS, Liu GK (2001) J Mater Res 16:366–372

    Article  CAS  Google Scholar 

  40. Pei Y, Chen X, Yao D, Ren G (2007) Rad Meas 42:407–412

    Article  CAS  Google Scholar 

  41. Danišík M, McInnes BIA, Kirkland CL, McDonald BJ, Evans NJ, Becker T (2017). Sci Adv. https://doi.org/10.1126/sciadv.1601121

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schwartz AJ, Wall MA, Zocco TG, Wolfer WG (2005). Phil Mag. https://doi.org/10.1080/02678370412331320026

    Article  Google Scholar 

  43. Jeffries JR, Hammons JA, Willey TM, Wall MA, Ruddle D, Ilavsky J, Allen PG, van Buuren T (2018) J Nucl Mat 498:505–510

    Article  CAS  Google Scholar 

  44. Ronchi C, Hiernaut JP (2004) J Nucl Mat 325:1–12

    Article  CAS  Google Scholar 

  45. Reiners PW (2005) Rev Mineral Geochem 58:151–179

    Article  CAS  Google Scholar 

  46. Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Geochim Cosmochim Acta 73:2347–2365

    Article  CAS  Google Scholar 

  47. Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Geister G (2013). Am J Sci. https://doi.org/10.2475/03.2013.01

    Article  Google Scholar 

  48. Baughman JS, Flowers RM, Metcalf JR, Dhansay T (2017) Geochim Cosmochim Acta 205:50–64

    Article  CAS  Google Scholar 

  49. Ginster U, Reiners PW, Nasdala L, Chanmuang NC (2019) Geochim Cosmochim Acta 249:225–246

    Article  CAS  Google Scholar 

  50. Ault AK, Guenthner WR, Moser AC, Miller GH, Refsnider KA (2018) Chem Geol 490:1–12

    Article  CAS  Google Scholar 

  51. Dawson JK, Elliott RM, Hurst R, Truswell AE (1954) J Chem Soc, 558–564

  52. Dawson JK, D'Eye WM, Truswell AE (1954) J Chem Soc, 3922–3929

  53. Dawson JK, Elliott RM (1953), Great Britain AERE Report, AERE-C/R-1207, Harwell, UK, 25 p.

  54. Claux B, Beneš O, Capelli E, Souček P, Meier R (2016) J Fluorine Chem 183:10–13

    Article  CAS  Google Scholar 

  55. Tosolin A, Souček P, Beneš O, Vigier J-F, Luzzi L, Konings RJM (2018) J Nucl Mat 503:171–177

    Article  CAS  Google Scholar 

  56. Chudinov ÉG (1970) Choporov D Ya. Atomnaya Énergiya 28:151–153

    CAS  Google Scholar 

  57. Casella A, Carter J, Lines A, Bello J, Bryan S, Clark R, Corbey J, Delegard C, Heller F, McNamara B, Sweet L (2019) Actinide Research Quarterly, No. 1, 2nd Quarter, 31–35

  58. Katz JJ, Sheft I (1960) In: Advances in inorganic chemistry and radiochemistry, Vol. 2, DOI https://doi.org/10.1016/S0065-2792(08)60190-9

  59. Fried S, Davidson NR (1947) Unclassified Report (June 30) United States Atomic Energy Commission, Oak Ridge, TN., MDDC-1250, 11 p.

  60. Luerkens DW (1984) Savannah River Laboratory Unclassified Report DPST-83–1065 35 p.

  61. Martella LL, Saba MT, Campbell GK (1984) Rockwell International, Rocky Flats Plant, RFP-3589, 22 p.

  62. Sohn CL, Thorn CW, Christensen DC (1982) 6th Actinide Separation Workshop, Augusta, GA, May 11–12, LA-UR-82–1230, 28p

  63. Christensen DC, Rayburn JA (1983) Los Alamos National Laboratory Report LA-9655-MS, UC-10, 11 p

  64. Morgan Jr. AN, Baker RD, Hazen WC, Henrickson AV, McNeese WD, Thomas RL (1958), In: 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy, A/CONF.15/P/531, 11 July, 19 p.

  65. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  66. Balzar D (1999) In: Snyder RL, Fiala J, Bunge HJ (eds.); Defect and microstructure analysis by diffraction; international union of crystallography: Chester, England, 1999; p 94

  67. ASTM E 967–08 (2014) ASTM International, United States

  68. ASTM E 1582–10 (2010) ASTM International, United States

  69. Haire RG, (2019) In: Clark DL, Geeson DA, Hanrahan RJ (eds) The Plutonium Handbook, 2nd edn., V. 3, Ch. 20, 1453–1490, American Nuclear Society

  70. Gabbott P (2008). In: Gabbott P (ed) Principles and applications of thermal analysis. Blackwell, Oxford UK, pp 1–50

    Chapter  Google Scholar 

  71. Wiss T, Dieste-Blanco O, Tacu A, Janssen A, Talip Z, Colle J-Y, Martin P, Konings R (2015) J Mater Res 30:1544–1554

    Article  CAS  Google Scholar 

  72. Myers N (1956) USAEC Rept. HW-45128, Hanford Atomic Products Operation, General Electric Co., 31 p.

  73. Orr RM, Sims HE, Taylor RJ (2015) J Nucl Mat 465:756–773

    Article  CAS  Google Scholar 

  74. Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Am Mineral 76:1510–1532

    CAS  Google Scholar 

  75. Westrum Jr., EF, Wallman AC (1950) Lawrence Berkeley National Laboratory Report, UCRL-697, 6 p.

  76. Oetting FL (1967) Chem Rev 67:261–297

    Article  CAS  Google Scholar 

  77. Cleveland, JM (1980) In: Wick OJ (ed.) Plutonium Handbook A Guide to the Technology, V. 1, American Nuclear Society, p 335–402.

  78. Rand MH, Fuger J (2000) European Commission Joint Research Centre, EUR 17332, 96 p.

  79. Barton CJ, Strehlow, (1961) J. lnorg. Nucl Chem 18:143–147

    Article  CAS  Google Scholar 

  80. Mulford RNR (1993) Los Alamos National Laboratory Unclassified Report LA-12569, UC-701, 24 p.

  81. Glushko VP, Gurvich LV, Bergman GA, Veits IV, Medvedev VA, Khachkuruzov GA, Yungman VS (1982) Thermodynamic properties of individual substances IV. Nauka, Moscow

    Google Scholar 

  82. Asker WJ, Wylie AW (1965) Aust J Chem 18:969–975

    Article  CAS  Google Scholar 

  83. Chatain S, Morel B (2016) In: Reference module in materials science and materials engineering, DOI https://doi.org/10.1016/B978-0-12-803581-8.00674-3 12016

Download references

Acknowledgements

We thank 2 anonymous reviewers, and Mr. Gary Sevigny, and Drs. Sergey I. Sinkov, T. Gannon Parker and two anonymous Journal reviewers for reviewing this paper and suggesting useful to this manuscript. Dr. Steve Yarbro provided valuable input pertaining to the origin of the LANL PuF4.

Funding

This work was supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). This work was supported by the NA-22 Office of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

Dr. David M. Wayne: conceptualization, methodology, investigation, formal analysis, resources, validation, data curation, writing (original draft), writing (review & editing), visualization. Dr. Jared Stritzinger: formal analysis, validation, data curation, resources, writing (review & editing), visualization. Dr. Amanda J. Casella: formal analysis, validation, data curation, resources, writing (review & editing). Dr. Lucas E. Sweet: investigation, data curation, writing. Dr. Jordan F. Corbey: investigation, data curation, writing. Mr. Daniel J. Garcia: investigation. Dr. E. Miller Wylie: investigation. Dr. Lav Tandon: funding acquisition, supervision, project administration, resources, writing (review & editing). Dr. Angela C. Olson: supervision, project administration, writing (review & editing), resources. Dr. Jung Ho Rim: investigation.

Corresponding author

Correspondence to David M. Wayne.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Human and animal testing

No animal or human testing was performed for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wayne, D.M., Stritzinger, J.T., Casella, A.J. et al. X‐ray diffraction, differential scanning calorimetry and evolved gas analysis of aged plutonium tetrafluoride (PuF4). J Radioanal Nucl Chem 329, 741–756 (2021). https://doi.org/10.1007/s10967-021-07810-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07810-z

Keywords

Navigation