Skip to main content
Log in

Determination of caesium-137 in water samples using modified carbon microfibers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

A Commentary to this article was published on 16 June 2022

Abstract

In this paper, the possibility of caesium sorption on microfibres produced by the Slovak Academy of Sciences was investigated. Sorption capacity limit of sorbent was increased by chemical modification. The binding of Cs to the surface of potassium copper ferrocyanide modified carbon microfibers was demonstrated by SEM–EDX analysis. Statistical comparison of the models showed that the Freundlich isothermal model was more suitable for describing sorption processes. The influence of desorption, pH value, competing ions and water volume were also tested. According to the results, this method seems to be suitable for large-scale caesium separation from contaminated waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alinaghizadeh H, Wålinder R, Vingård E, Tondel M Total cancer incidence in relation to 137Cs fallout in the most contaminated counties in Sweden after the Chernobyl nuclear power plant accident: a register-based study. (2044–6055 (Electronic))

  2. Liu X, Chen G-R, Lee D-J, Kawamoto T, Tanaka H, Chen M-L, Luo Y-K (2014) Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Biores Technol 160:142–149. https://doi.org/10.1016/j.biortech.2014.01.012

    Article  CAS  Google Scholar 

  3. Zhang H, Kim YK, Hunter TN, Brown AP, Lee JW, Harbottle D (2017) Organically modified clay with potassium copper hexacyanoferrate for enhanced Cs+ adsorption capacity and selective recovery by flotation. J Mater Chem A 5(29):15130–15143. https://doi.org/10.1039/C7TA03873A

    Article  CAS  Google Scholar 

  4. Yang H, Sun L, Zhai J, Li H, Zhao Y, Yu H (2014) In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J Mater Chem A 2(2):326–332. https://doi.org/10.1039/C3TA13548A

    Article  CAS  Google Scholar 

  5. Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182(1):225–231. https://doi.org/10.1016/j.jhazmat.2010.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shakir K, Sohsah M, Soliman M (2007) Removal of cesium from aqueous solutions and radioactive waste simulants by coprecipitate flotation. Sep Purif Technol 54(3):373–381. https://doi.org/10.1016/j.seppur.2006.10.006

    Article  CAS  Google Scholar 

  7. Adavan Kiliyankil V (2014) Encapsulation of adsorptive particles into CNT-reinforced alginate gels for the development of high-performance adsorbent for cesium and strontium eliminations. 博士 (環境科学), 北海道大学,

  8. Dumanlı AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47(10):4236–4250. https://doi.org/10.1007/s10853-011-6081-8

    Article  CAS  Google Scholar 

  9. Bacon R (1959) Filamentary Graphite and Method for Producing the Same. United States Patent

  10. Bacon R, Cranch GE, Moyer JRO, Watts WH (1967) Process for manufacturing flexible carbonaceous textile material. United States Patent

  11. Schalamon WA, Bacon R (1970) Process for producing carbon fibers having a high young's modulus of elasticity. United States Patent,

  12. Kaushik VK, Bhardwaj A (1994) Characterization of carbon fibre surfaces using electron spectroscopy for chemical analysis. Polym Testing 13(4):355–362. https://doi.org/10.1016/0142-9418(94)90005-1

    Article  CAS  Google Scholar 

  13. Morgan P (2005) Carbon fibers and their composites. 1st edition edn. CRC Press, Boca Raton. Doi:https://doi.org/10.1201/9781420028744

  14. Huang X (2009) Fabrication and properties of carbon fibers. Materials (Basel) 2(4):2369–2403. https://doi.org/10.3390/ma2042369

    Article  CAS  Google Scholar 

  15. Peters ST (1998) Handbook of composites. 2nd edition edn. Springer. Doi:https://doi.org/10.1007/978-1-4615-6389-1

  16. Watt W (1970) Production and properties of high modulus carbon fibres. Proc R Soc Lond A 319(1536):5–15

    Article  CAS  Google Scholar 

  17. Edie DD, Fox NK, Barnett BC, Fain CC (1986) Melt-spun non-circular carbon fibers. Carbon 24(4):477–482. https://doi.org/10.1016/0008-6223(86)90271-X

    Article  CAS  Google Scholar 

  18. Yamashita A, Sasaki T, Tanaka S (2017) Electrochemical synthesis and immobilization of a beadwork-like Prussian Blue on carbon fiber and the removal of cesium. J Environ Chem Eng 5(3):2912–2920. https://doi.org/10.1016/j.jece.2017.05.043

    Article  CAS  Google Scholar 

  19. Vipin AK, Fugetsu B, Sakata I, Isogai A, Endo M, Li M, Dresselhaus MS (2016) Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci Rep 6(1):37009. https://doi.org/10.1038/srep37009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lab O Origin Pro 9. https://www.originlab.com/.

  21. Silliková V, Dulanská S, Horník M, Jakubčinová J, Mátel Ľ (2020) Impregnated fly ash sorbent for cesium-137 removal from water samples. J Radioanal Nucl Chem 324(3):1225–1236. https://doi.org/10.1007/s10967-020-07132-6

    Article  CAS  Google Scholar 

  22. Dulanská S, Zvachová S, Silliková V, Mátel Ľ, Šauša O, Maťko I (2018) Modified biosorbent wood-decay fungus Fomes fomentarius for pre-concentration of 137Cs in water samples. J Radioanal Nucl Chem 318(3):2493–2500. https://doi.org/10.1007/s10967-018-6332-0

    Article  CAS  Google Scholar 

  23. Pilson MEQ (2012) An Introduction to the Chemistry of the Sea. 2 edn. Cambridge University Press, Cambridge. Doi: https://doi.org/10.1017/CBO9781139047203

  24. Vincent T, Vincent C, Guibal E (2015) Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents—a mini-review. 20 (11):20582–20613

  25. Ayrault S, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Loos-Neskovic C (1998) Sorption mechanisms of cesium on CuII2FeII(CN)6and CuII3[FeIII(CN)6]2Hexacyanoferrates and their relation to the crystalline structure. J Solid State Chem 141(2):475–485. https://doi.org/10.1006/jssc.1998.7997

    Article  CAS  Google Scholar 

  26. Han F, Zhang G-H, Gu P (2013) Adsorption kinetics and equilibrium modeling of cesium on copper ferrocyanide. J Radioanal Nucl Chem 295(1):369–377. https://doi.org/10.1007/s10967-012-1854-3

    Article  CAS  Google Scholar 

  27. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276(1):47–52. https://doi.org/10.1016/j.jcis.2004.03.048

    Article  CAS  PubMed  Google Scholar 

  28. Piperopoulos E, Calabrese L, Mastronardo E, Milone C, Proverbio E (2020) 8-Carbon-based sponges for oil spill recovery. In: Abd-Elsalam KA (ed) Carbon nanomaterials for agri-food and environmental applications. Elsevier, pp 155–175. Doi:https://doi.org/10.1016/B978-0-12-819786-8.00008-6

  29. Ray SS, Gusain R, Kumar N (2020) Chapter five - Adsorption equilibrium isotherms, kinetics and thermodynamics. In: Ray SS, Gusain R, Kumar N (eds) Carbon nanomaterial-based adsorbents for water purification. Elsevier, pp 101–118. Doi:https://doi.org/10.1016/B978-0-12-821959-1.00005-2

  30. Sahoo TR, Prelot B (2020) Chapter 7 - Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. In: Bonelli B, Freyria FS, Rossetti I, Sethi R (eds) Nanomaterials for the detection and removal of wastewater pollutants. Elsevier, pp 161–222. Doi:https://doi.org/10.1016/B978-0-12-818489-9.00007-4

  31. Snipes M, Taylor DC (2014) Model selection and Akaike Information Criteria: An example from wine ratings and prices. Wine Econ Policy 3(1):3–9. https://doi.org/10.1016/j.wep.2014.03.001

    Article  Google Scholar 

  32. Chen F-P, Jin G-P, Peng S-Y, Liu X-D, Tian J-J (2016) Recovery of cesium from residual salt lake brine in Qarham playa of Qaidam Basin with prussian blue functionalized graphene/carbon fibers composite. Colloids Surf A 509:359–366. https://doi.org/10.1016/j.colsurfa.2016.09.030

    Article  CAS  Google Scholar 

  33. Su J-Y, Jin G-P, Chen T, Liu X-D, Chen C-N, Tian J-J (2017) The characterization and application of prussian blue at graphene coated carbon fibers in a separated adsorption and electrically switched ion exchange desorption processes of cesium. Electrochim Acta 230:399–406. https://doi.org/10.1016/j.electacta.2017.02.027

    Article  CAS  Google Scholar 

  34. Proctor A, Toro-Vazquez JF (1996) The Freundlich isotherm in studying adsorption in oil processing. J Am Oil Chem Soc 73(12):1627–1633. https://doi.org/10.1007/BF02517963

    Article  CAS  Google Scholar 

  35. Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Biores Technol 97(1):104–109. https://doi.org/10.1016/j.biortech.2005.02.027

    Article  CAS  Google Scholar 

  36. Van der Bruggen B (2016) Freundlich isotherm, pp 834–835. Doi:https://doi.org/10.1007/978-3-662-44324-8_254

  37. Mu T-H, Sun H-N (2019) Chapter 22—sweet potato leaf polyphenols: preparation, individual phenolic compound composition and antioxidant activity. In: Watson RR (ed) Polyphenols in plants (Second Edition). Academic Press, pp 365–380. Doi:https://doi.org/10.1016/B978-0-12-813768-0.00022-0

  38. Yang S, Han C, Wang X, Nagatsu M (2014) Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. J Hazard Mater 274:46–52. https://doi.org/10.1016/j.jhazmat.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  39. Vipin AK, Hu B, Fugetsu B (2013) Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. J Hazard Mater 258–259:93–101. https://doi.org/10.1016/j.jhazmat.2013.04.024

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi A, Kitajima A, Parajuli D, Hakuta Y, Tanaka H, Ohkoshi S-i, Kawamoto T (2016) Radioactive cesium removal from ash-washing solution with high pH and high K+-concentration using potassium zinc hexacyanoferrate. Chem Eng Res Des 109:513–518. https://doi.org/10.1016/j.cherd.2016.02.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency [APVV-17-015], the Scientific Grant Agency of the Slovak Republic [KEGA 015UK-4/2020]. This research was part of a dissertation theses at the department of Nuclear Chemistry of Comenius University of Bratislava in the Slovak Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Silliková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silliková, V., Jakubčinová, J., Horník, M. et al. Determination of caesium-137 in water samples using modified carbon microfibers. J Radioanal Nucl Chem 331, 1275–1284 (2022). https://doi.org/10.1007/s10967-022-08212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08212-5

Keywords

Navigation