Skip to main content
Log in

Fe3O4–SiO2 nanocomposites obtained via alkoxide and colloidal route

  • Nanomaterials and Thin Films
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The magnetic nanocomposite materials represent an important class of nanomaterials extensively studied nowadays due to their varied applications from medical diagnostic to storage information. The iron oxides in silica matrix systems are highly investigated. The sol-gel method is a suitable way of preparation of Fe3O4-SiO2 nanocomposite materials, since this method allowed the preparation of nanocomposite materials with narrow size distribution of magnetite in silica matrix. In the present work, nanocomposite materials in the Fe3O4-SiO2 system were prepared by sol-gel method via alkoxide and aqueous route. As SiO2 sources, tetraethoxysilan (TEOS) for the alkoxide route, as well as silica sol Ludox (30%) for the aqueous route, were used. This study shows the influence of the type of silica matrix on the structure, size, and distribution of the Fe3O4 nanoparticles in the Fe3O4-SiO2 systems. The gels were annealed at 550°C in order to consolidate the matrices. The structural characterization of the obtained materials via the two preparation routes was performed by DTA/TGA analysis, X-ray diffraction, IR and Mössbauer spectroscopy, Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith WF (1986) Principles of materials science engineering. MacGraw Hill Book. Singapore, p 128

    Google Scholar 

  2. Jitianu A, Crisan M, Meghea A, Rau I, Zaharescu M (2002) J Mater Chem 12:1–8

    Article  Google Scholar 

  3. Yoshio T, Kawaguchi C, Kanamaru F, Takahashi K (1981) J Non-Cryst Solids 43:129

    Article  CAS  Google Scholar 

  4. Ennas G, Masinu A, Piccaluga G, Zedda D, Gatteschi D, Sangregorio C, Stanger JL, Concas G, Spano (1998) Chem Mater 10:495

    Article  CAS  Google Scholar 

  5. Cannas C, Gatteschi D, Masinu A, Piccaluga G, Sangregorio C (1998) J Phys Chem B 102:7721

    Article  CAS  Google Scholar 

  6. Bruni S, Cariati F, Casu M, Lai A, Musinu A, Piccaluga G, Solinas S (1999) Nano Struct Mater 11:573

    Article  CAS  Google Scholar 

  7. Morales MP, Munoz-Aguado MJ, Garcia-Placios JL, Lazaro FJ, Serna CJ (1998) J Magn Magn Mater 183:232

    Article  CAS  Google Scholar 

  8. Meldrum FC, Kotov NA, Fendler JH (1994) J Phys Chem 98:4506

    Article  CAS  Google Scholar 

  9. Wang L, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH, Lin Y, Kim N, Wang JQ, Zhong C-J (2005) J Phys Chem B 109:21593

    Article  CAS  Google Scholar 

  10. Watson S, Beydoun D, Amal R (2002) J Photochem Photobio A: Chem 148:303

    Article  CAS  Google Scholar 

  11. Watson S, Scott S, Beydoun D, Amal R (2005) J Nanopart Res 7:691

    Article  CAS  Google Scholar 

  12. Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Colloids Surf A: Physiochem Eng Aspects 262:87

    Article  CAS  Google Scholar 

  13. Xu Z, Wang CC, Yang WL, Fu SK (2005) J Mat Sci 40:4667

    Article  CAS  Google Scholar 

  14. Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) Anal Chem 76:1316

    Article  CAS  Google Scholar 

  15. Shieh DB, Cheng FY, Su CH, Yeh CS, Wu MT, Wu YN, Tsai CY, Wu CL, Chen DH, Chou CH (2005) Biomat 26:7183

    Article  CAS  Google Scholar 

  16. Ito A, Shinkai M, Honda H, Kobayashi T (2005) J Biosci Bioeng 100:1

    Article  CAS  Google Scholar 

  17. Kalambur VS, Han B, Hammer BE, Shield TW, Bischof JC (2005) Nanotech 16:1221

    Article  CAS  Google Scholar 

  18. Jun YN, Dabbs DM, Aksay IA, Erramilli S (1994) Langmuir 10:3377

    Article  CAS  Google Scholar 

  19. Bate G (1991) J Magn Magn Mater 100:413

    Article  CAS  Google Scholar 

  20. Homola AM, Lorenz MR, Mastrangelo CJ, Tilbury TL (1986) IEEE Trans Magn 22:716

    Article  Google Scholar 

  21. Ll. Casas, Roig A, Rodriguez E, Molins E, Tejada J, Sort J (2001) J Non-Cryst Solids 285:37

    Article  CAS  Google Scholar 

  22. Zaharescu M, Crisan M, Jitianu A, Crisan D, Meghea A, Rau I (2000) J Sol-Gel Sci Tech 19:631

    Article  CAS  Google Scholar 

  23. Peleanu I, Zaharescu M, Rau I, Crisan M, Jitianu A, Meghea A (2000) J Radioanal Nucl Chem 246:557

    Article  CAS  Google Scholar 

  24. Brand RA (1987) Nucl Instr Methods Phys Res B 28:398

    Article  Google Scholar 

  25. Bertoluzza A, Fagnano C, Morelli MA, Gottaradi V, Guglielmi M (1982) J Non-Cryst Solids 48:117

    Article  CAS  Google Scholar 

  26. Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon Press, Oxford, p. 551

    Google Scholar 

  27. Mørup S, Dumisec JA, Topsoe H (1980) Magnetic microcristals in application of mössbauer spectroscopy, Vol. II. In: Cohen RL (ed)

  28. Szabó D, Czakó-Nagy I, Zrinyi M, Vértes A (2000) J Colloid Interf Sci 221:166

    Article  Google Scholar 

  29. Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) J Appl Phys 94:

  30. Visalakski G, Venkateswaran G, Kulshreshtha SK, Moorthy PH (1993) Mater Res Bull 28:829

    Article  Google Scholar 

  31. Simmons GW, Leidheiser H Jr (1976) In: Cohen RL (ed) Applications of Mössbauer spectroscopy, vol. I. Academic Press, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jitianu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jitianu, A., Raileanu, M., Crisan, M. et al. Fe3O4–SiO2 nanocomposites obtained via alkoxide and colloidal route. J Sol-Gel Sci Technol 40, 317–323 (2006). https://doi.org/10.1007/s10971-006-9321-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-9321-7

Keywords

Navigation