Skip to main content
Log in

Mesoporous hybrid and nanocomposite thin films. A sol–gel toolbox to create nanoconfined systems with localized chemical properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous Thin Films (MTF) can be created by combining sol–gel synthesis, template self-assembly and chemical surface modification. A wide palette of inorganic (oxides, phosphates, carbon-based, etc.) and hybrid organic–inorganic frameworks with a variety of composition, pore sizes, and nanoscale, organic or biological functions located in the inorganic skeleton, pore surface or pore interior can be obtained. The properties of the functional pore systems are tuned by the pore size and geometry, wall composition and surface features. These MTF with interesting electronic and optical controlled features are indeed a “nanofacility”. Well-defined monodisperse sized pores also act as nanoreactors, or nanocavities with controlled environment and behaviour. In the last years, the production of accessible MTF, in which either the pore surface or pore volume can be modified by organic functional groups or nanoparticles has been thoroughly explored. Each highly controlled MTF originated from a reproducible and modular synthesis is in itself a building block for more complex structures, presenting order at different length scales (molecular, mesoscopic, macroscopic), and novel properties derived thereof. Selected examples of optical and chemical behaviour of these multiscale materials are presented to illustrate these points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. See for example, the special issue dedicated to Templated Materials of Chemistry of Materials, 2008, volume 20, No 3.

References

  1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    CAS  Google Scholar 

  2. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    CAS  Google Scholar 

  3. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988

    CAS  Google Scholar 

  4. Sanchez C, Boissière C, Grosso D, Laberty C, Nicole L (2008) Chem Mater 20:682

    CAS  Google Scholar 

  5. Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093

    Google Scholar 

  6. Boissière C, Grosso D, Lepoutre S, Nicole L, Brunet-Bruneau A, Sanchez C (2005) Langmuir 21:12362

    Google Scholar 

  7. Song C, Villemure G (2001) Microporous Mesoporous Mater 44–45:679

    Google Scholar 

  8. Walcarius A (2005) CR Chim 8:693

    CAS  Google Scholar 

  9. Wei T-C, Hillhouse HW (2007) Langmuir 23:5689

    CAS  Google Scholar 

  10. Otal EH, Angelomé PC, Aldabe-Bilmes S, Soler-Illia GJAA (2006) Adv Mater 18:934

    CAS  Google Scholar 

  11. Fatthakova-Rohlfing D, Wark M, Rathouskŷ J (2007) Chem Mater 19:6140

    Google Scholar 

  12. Sakatani Y, Grosso D, Nicole L, Boissière C, Soler-Illia GJAA, Sanchez C (2006) J Mater Chem 16:77

    CAS  Google Scholar 

  13. Zhang Y, Lin J, Wang J (2006) Chem Mater 18:2917

    CAS  Google Scholar 

  14. Angelomé PC, Andrini L, Calvo ME, Requejo FG, Bilmes SA, Soler-Illia GJAA (2007) J Phys Chem C 111:10886

    Google Scholar 

  15. Coakley KM, Liu Y, McGehee MD, Frindell K, Stucky GD (2003) Adv Funct Mater 13:301

    CAS  Google Scholar 

  16. Coakley KM, McGehee MD (2003) Appl Phys Lett 83:3380

    CAS  Google Scholar 

  17. Zukalová M, Zukal A, Kavan L, Nazeeruddin MK, Liska P, Grätzel M (2005) Nano Lett 5:1789

    Google Scholar 

  18. Lancelle-Beltran E, Prené P, Boscher C, Belleville P, Buvat P, Lambert S, Guillet S, Boissière C, Grosso D, Sanchez C (2006) Chem Mater 18:6152

    CAS  Google Scholar 

  19. Soler-Illia GJAA, Innocenzi P (2006) Chem Euro J 12:4478

    CAS  Google Scholar 

  20. Nicole L, Boissière C, Grosso D, Quach A, Sanchez C (2005) J Mater Chem 15:3598

    CAS  Google Scholar 

  21. Grosso D, Cagnol F, Soler-Illia GJAA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Adv Funct Mater 14:309

    CAS  Google Scholar 

  22. Balkenende AR, de Theije FK, Kriege JC (2003) Adv Mater 15:139

    CAS  Google Scholar 

  23. De Theije FK, Balkenende AR, Verheijen MA, Baklanov MR, Mogilnikov KP, Furukawa Y (2003) J Phys Chem B 107:4280

    Google Scholar 

  24. Pai RA, Humayun R, Schulber T, Sengupta A, Sun J-N, Watkins JJ (2004) Science 303:507

    CAS  Google Scholar 

  25. Innocenzi P, Soler-Illia GJAA (2009) Key EngMater 391:109

    CAS  Google Scholar 

  26. Anderson MT, Martin JE, Odinek J, Newcomer P (1996) In: Lobo RF, Beck JS, Suib SL, Corbin DR, Davi ME, LE Iton, Zones SI (eds) Microporous and Macroporous Materials, vol 431. Materials Research Society, Pittsburgh PA, p 217

    Google Scholar 

  27. Ogawa M (1994) J Am Chem Soc 116:7941

    CAS  Google Scholar 

  28. Ogawa M (1996) Chem Commun 1149

  29. Yang H, Kuperman A, Coombs N, Mamiche-Afara S, Ozin GA (1996) Nature 379:703

    CAS  Google Scholar 

  30. Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI (1997) Nature 389:364

    CAS  Google Scholar 

  31. Klotz M, Albouy PA, Ayral A, Ménager C, Grosso D, Van der Lee A, Cabuil V, Babonneau F, Guizard C (2000) Chem Mater 12:1721

    CAS  Google Scholar 

  32. Lu Y, Fan H, Doke N, Loy DA, Assink RA, LaVan DA, Brinker CJ (2000) J Am Chem Soc 122:5258

    CAS  Google Scholar 

  33. Albouy PA, Ayral A (2002) Chem Mater 14:3391

    CAS  Google Scholar 

  34. Dourdain S, Gibaud A (2005) Appl Phys Lett 87:223105

    Google Scholar 

  35. Dourdain S, Mehdi A, Bardeau JF, Gibaud A (2006) Thin Solid Films 495:205

    CAS  Google Scholar 

  36. Huang MH, Soyez HM, Dunn BS, Zink JI, Sellinger A, Brinker CJ (2008) J Sol-Gel Sci Technol 47:300

    CAS  Google Scholar 

  37. Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Adv Mater 11:579

    CAS  Google Scholar 

  38. Grosso D, Balkenende AR, Albouy PA, Ayral A, Amenitsch H, Babonneau F (2001) Chem Mater 13:1848

    CAS  Google Scholar 

  39. Grosso D, Babonneau F, Soler-Illia GJAA, Albouy PA, Amenitsch H (2002) Chem Commun 748

  40. Crepaldi EL, Soler-Illia GJAA, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) J Am Chem Soc 125:9770

    CAS  Google Scholar 

  41. Cagnol F, Grosso D, Soler-Illia GJAA, Crepaldi EL, Amenitsch H, Sanchez C (2003) J Mater Chem 13:61

    CAS  Google Scholar 

  42. Crepaldi EL, Soler-Illia GJAA, Grosso D, Albouy PA, Sanchez C (2001) Chem Commun 1582

  43. Urade VN, Hillhouse HW (2005) J Phys Chem B 109:10538

    CAS  Google Scholar 

  44. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 356:152

    Google Scholar 

  45. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1999) Chem Mater 11:2813

    CAS  Google Scholar 

  46. Grosso D, Soler-Illia GJAA, Babonneau F, Sanchez C, Albouy PA, Brunet-Bruneau A, Balkenende AR (2001) Adv Mater 13:1085

    CAS  Google Scholar 

  47. Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C (2003) Curr Opin Colloid Interface Sci 8:109

    CAS  Google Scholar 

  48. Förster S, Antonietti M (1998) Adv Mater 10:195

    Google Scholar 

  49. Bates FS, Fredrickson GH (1999) Physics Today 52:32

    CAS  Google Scholar 

  50. Israelachvili JN (1992) Intermolecular and surface forces: with applications to colloidal and biological systems, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  51. Israelachvili JN, Mitchell DJ, Nyham BW (1976) J Chem Soc Faraday Trans 2(72):1525

    Google Scholar 

  52. Klotz M, Ayral A, Guizard C, Cot L (2000) J Mater Chem 10:223

    Google Scholar 

  53. Alberius PCA, Frindell KL, Hayward RC, Kramer EJ, Stucky GD, Chmelka BF (2002) Chem Mater 14:3284

    CAS  Google Scholar 

  54. Besson S, Gacoin T, Ricolleau C, Jacquiod C, Boilot JP (2003) J Mater Chem 13:404

    CAS  Google Scholar 

  55. Soler-Illia GJAA, Crepaldi EL, Grosso D, Durand D, Sanchez C (2002) Chem Commun 2298

  56. Doshi DA, Gibaud A, Goletto V, Lu M, Gerung H, Ocko B, Han SM, Brinker CJ (2003) J Am Chem Soc 125:11646

    CAS  Google Scholar 

  57. Soler-Illia GJAA, Scolan E, Louis A, Albouy PA, Sanchez C (2001) New J Chem 25:156

    CAS  Google Scholar 

  58. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York

    Google Scholar 

  59. Crepaldi EL, Soler-Illia GJAA, Bouchara A, Grosso D, Durand D, Sanchez C (2003) Angew Chem Int Ed 42:347

    CAS  Google Scholar 

  60. Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez CJ (2004) Mater Chem 14:1879

    CAS  Google Scholar 

  61. Bosc F, Ayral A, Albouy PA, Guizard C (2003) Chem Mater 15:2463

    CAS  Google Scholar 

  62. Hwang YK, Lee KC, Kwon YU (2001) Chem Commun 1738

  63. Crepaldi EL, Soler-Illia GJAA, Grosso D, Sanchez C (2003) New J Chem 27:9

    CAS  Google Scholar 

  64. Bass JD, Grosso D, Boissière C, Sanchez C (2008) J Am Chem Soc 130:7882

    CAS  Google Scholar 

  65. Grosso D, Soler-Illia GJAA, Crepaldi EL, Cagnol F, Sinturel C, Bourgeois A, Brunet-Bruneau A, Amenitsch H, Albouy PA, Sanchez C, Choi SY, Mamak M, Speakman S, Chopra N, Ozin GA (2004) Small 1:226

    Google Scholar 

  66. Štangar UL, Černigoj U, Trebše P, Maver K, Gross S (2006) Monatsh Chem 137:647

    Google Scholar 

  67. Carreon M, Choi SY, Mamak M, Chopra N, Ozin GA (2007) J Mater Chem 17:82

    CAS  Google Scholar 

  68. Grosso D, Boissière C, Smarsly B, Brezesinski T, Pinna N, Albouy PA, Amenitsch H, Antonietti M, Sanchez C (2004) 3:787

  69. Lee J, Orilall MC, Warren SC, Kamperman M, Disalvo FJ, Wiesner U (2008) Nat Mater 7:222

    CAS  Google Scholar 

  70. Tian B, Liu X, Tu B, Yu C, Fan J, Wang L, Xie S, Stucky GD, Zhao DY (2003) Nat Mater 2:159

    CAS  Google Scholar 

  71. Nishiyama Y, Tanaka S, Hillhouse HW, Nishiyama N, Egashira Y, Ueyama K (2006) Langmuir 22:9469

    CAS  Google Scholar 

  72. Mazaj M, Costacurta S, Zabukovec-Logar N, Mali G, Novak-Tušar N, Innocenzi P, Malfatti L, Thibault-Starzyk F, Amenitsch H, Kaui V, Soler-Illia GJAA (2008) Langmuir 24:6220

    CAS  Google Scholar 

  73. Tanaka S, Katayama Y, Tate MP, Hillhouse HW, Miyake Y (2007) J Mater Chem 17:3639

    CAS  Google Scholar 

  74. Martínez-Ferrero E, Sakatani Y, Boissière C, Grosso D, Fuertes A, Fraxedas J, Sanchez C (2007) Adv Funct Mater 17:3348

    Google Scholar 

  75. Innocenzi P, Kidchob T, Falcaro P, Takahashi M (2008) Chem Mater 20:607

    CAS  Google Scholar 

  76. Chia-Wen W, Tsuyoshi A, Makoto K (2004) Nanotechnology 15:1886–1889

    Google Scholar 

  77. Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD (1998) Science 282:2244

    CAS  Google Scholar 

  78. Yang P, Rizvi AH, Messer B, Chmelka BF, Whitesides GM, Stucky GD (2001) Adv Mater 13:427

    Google Scholar 

  79. Cucinotta F, Popovi Z, Weiss EA, Whitesides GM, De Cola L (2009) Adv Mater DOI: 10.1002/adma.200801751 (in press)

  80. Doshi DA, Huesing NK, Lu M, Fan H, Lu Y, Simmons-Potter K Jr, Hurd AJ, Brinker CJ (2000) Science 290:107

    CAS  Google Scholar 

  81. Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Nature 410:913

    CAS  Google Scholar 

  82. Ha K, Lee YJ, Chun YS, Park YS, Lee GS, Yoon KB (2001) Adv Mater 13:594

    CAS  Google Scholar 

  83. Sugimura H, Hozumi A, Kameyama T, Takai O (2001) Adv Mater 13:667

    CAS  Google Scholar 

  84. Clark T Jr, Ruiz JD, Fan H, Brinker CJ, Swanson BI, Parikh AN (2000) Chem. Mater 12:3879

    CAS  Google Scholar 

  85. Dattelbaum AM, Amweg ML, Ecke LE, Yee CK, Shreve PA, Parikh AN (2003) Nano Lett 3:719

    CAS  Google Scholar 

  86. Malfatti L, Kidchob T, Costacurta S, Falcaro P, Schiavuta P, Amenitsch H, Innocenzi P (2006) Chem Mater 18:4553

    CAS  Google Scholar 

  87. Falcaro P, Costacurta S, Malfatti L, Takahashi M, Kidchob T, Casula MF, Piccinini M, Marcelli A, Marmiroli B, Amenitsch H, Schiavuta P, Innocenzi P (2008) Adv Mater 20:1864–1869

    CAS  Google Scholar 

  88. George MC, Mohraz A, Piech M, Bell NS, Lewis JA, Braun PV (2009) Adv Mater 21:66

    CAS  Google Scholar 

  89. Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, Lopez GP, Brinker GJ (2000) Nature 405:56

    CAS  Google Scholar 

  90. Mougenot M, Lejeune M, Baumard JF, Boissiere C, Ribot F, Grosso D, Sanchez C, Noguera RJ (2006) Am Ceram Soc 89:1876

    CAS  Google Scholar 

  91. Su M, Liu X, Li S-Y, Dravid VP, Mirkin CAJ (2002) Am Chem Soc 124:1560

    CAS  Google Scholar 

  92. Kim T-W, Ryoo R, Kruk M, Gierszal KP, Jaroniec M, Kamiya S, Terasaki O (2004) J Phys Chem B 108:11480

    CAS  Google Scholar 

  93. Etienne M, Quach A, Grosso D, Nicole L, Sanchez C, Walcarius A (2007) Chem Mater 19:844

    CAS  Google Scholar 

  94. Fuertes MC, Soler-Illia GJAA (2006) Chem Mater 18:2109

    CAS  Google Scholar 

  95. Kumon S, Nakanishi K, Hirao K (2000) J Sol-Gel Sci Technol 19:1573

    Google Scholar 

  96. Malfatti L, Bellino M, Innocenzi P, Soler-Illia GJAA (2008) Chem Mater DOI:10.1021/cm900289c (in press)

  97. Xie R, Karim A, Douglas JF, Han CC, Weiss RA (1998) Phys Rev Lett 81:1251

    CAS  Google Scholar 

  98. Stange TG, Evans DF, Hendrickson WA (1997) Langmuir 13:4459

    CAS  Google Scholar 

  99. Lee Y, Koh K, Na H, Kim K, Kang J-J, Kim J (2009) Nanoscale Res Lett 4:364

    CAS  Google Scholar 

  100. Zelcer A, Wolosiuk A, Soler-Illia GJAA (2009) J Mater Chem 19:4191

    CAS  Google Scholar 

  101. Fan J, Boettcher SW, Tsung C-K, Shi Q, Schierhorn M, Stucky GD (2008) Chem Mater 20:909

    CAS  Google Scholar 

  102. Miyata H, Suzuki T, Fukuoka A, Sawada T, Watanabe M, Noma T, Takada K, Mukaide T, Kuroda K (2004) Nat Mater 3:651

    CAS  Google Scholar 

  103. Miyata H (2007) Microporous Mesoporous Mater 101:296

    CAS  Google Scholar 

  104. Bolger CT, Farrell RA, Hughes GM, Morris MA, Petkov N, Holmes JD (2009) ACS Nano 3:2311

    CAS  Google Scholar 

  105. Fitzgerald TG, Farrell RA, Petkov N, Bolger CT, Shaw MT, Charpin JPF, Gleeson JP, Holmes JD, Morris MA (2009) Langmuir 25:13551

    CAS  Google Scholar 

  106. Cagnol F, Grosso D, Sanchez C (2004) Chem Commun 1742

  107. Soler-Illia GJAA, Angelomé PC, Bozzano P (2004) Chem Commun 2854

  108. Angelomé PC, Soler-Illia GJAA (2005) J Mater Chem 15:3903

    Google Scholar 

  109. Shi JL, Hua ZL, Zhang LX (2004) J Mater Chem 14:795

    CAS  Google Scholar 

  110. Calvo A, Joselevich M, Soler-Illia GJAA, Williams FJ (2009) Microporous Mesoporous Mater 121:67

    CAS  Google Scholar 

  111. Calvo A, Angelomé PC, Sánchez VM, Scherlis D, Williams FJ, Soler-Illia GJAA (2008) Chem Mater 20:4661

    CAS  Google Scholar 

  112. Calvo A, Yameen B, Williams FJ, Azzaroni OA, Soler-Illia GJAA (2009) Chem Commun 2553

  113. Calvo A, Yameen B, Williams FJ, Soler-Illia GJAA, Azzaroni O (2009) J Am Chem Soc 131:10866

    CAS  Google Scholar 

  114. Liu J, Shin Y, Nie Z, Chang JH, Wang L-Q, Fryxell GE, Samuels WD, Exarhos GJ (2000) J Phys Chem A 104:8328

    CAS  Google Scholar 

  115. Notestein JM, Katz A (2006) Chem Euro J 12:3854

    Google Scholar 

  116. Bronstein L (2003) Top Curr Chem 226:55

    CAS  Google Scholar 

  117. Huang MH, Choudrey A, Yang P (2000) Chem Commun 1063

  118. Perez MD, Otal E, Bilmes SA, Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C (2004) Langmuir 20:6879

    CAS  Google Scholar 

  119. Wang D, Luo H, Kou R, Gil MP, Xiao S, Golub VO, Yang Z, Brinker CJ, Lu Y (2004) Angew Chem Int Ed 43:6169

    CAS  Google Scholar 

  120. Mallory GO, Hajdu JB (eds) (1990) Electroless plating: fundamentals and applications. William Andrew Publishing, Noyes

  121. Kumai Y, Tsukada H, Akimoto Y, Sugimoto N, Seno Y, Fukuoka AT, Ichikawa M, Inagaki S (2006) Adv Mater 18:760

    CAS  Google Scholar 

  122. Mulvaney P (2001) MRS Bull 1009

  123. Van der Lee A (2000) A Solid State Sci 2:157

    Google Scholar 

  124. Fuertes MC, Marchena M, Marchi MC, Wolosiuk A, Soler-Illia GJAA (2009) Small 5:272

    CAS  Google Scholar 

  125. Wolosiuk A, Tognalli NG, Fuertes MC, Granada M, Troiani H, Bilmes SA, Fainstein A, Soler-Illia GJAA (2010) J Mater Chem (submitted)

  126. Fuertes MC, Colodrero S, Lozano G, Rodríguez González-Elipe A, Grosso D, Boissière C, Sánchez C, Soler-Illia GJAA, Míguez H (2008) J Phys Chem C 112:3157

    CAS  Google Scholar 

  127. Angelomé PC, Fuertes MC, Soler-Illia GJAA (2006) Adv Mater 18:2397

    Google Scholar 

  128. Martínez ED, Bellino MG, Soler-Illia GJAA (2009) ACS Appl Mater Interface 1:746

    Google Scholar 

  129. Choi SY, Mamak M, von Freymann G, Chopra N, Ozin GA (2006) Nano Lett 6:2456

    CAS  Google Scholar 

  130. Fuertes MC, López-Alcaraz FJ, Marchi MC, Troiani H, Luca V, Míguez H, Soler-Illia GJAA (2007) Adv Funct Mater 17:1247

    CAS  Google Scholar 

Download references

Acknowledgments

Authors thank ABTLUS for partially funding access to the LNLS synchrotron facility, D02A-SAXS2 projects #4286/05, 4643/05, 4785/05, and D10A-XRD2 # 5872/06 project. Work partially funded by CONICET (PIP 5191, fellowship for MCF), ANPCyT (Grants PICT 06-12057, PICT 34518, PAE 2004 22711, PME 00038), and Gabbos. PCA, MCF, AZ and MGB thank CONICET for student and postdoctoral fellowships. PCA thanks CNEA for a graduate fellowship. EDM thanks Universidad de San Martín (UNSAM) for a graduate fellowship. GJAASI and AW are CONICET researchers. Authors thank Dr. M.C. Marchi for help in microscopy measurements, Prof. I. Torriani and Dr. T. Plivelic for assistance in SAXS, Dr. G. Kellermann for his help in XRR, Dr. L- Pietrasanta and S. Ludueña for the AFM image and P. Y. Steinberg for her help on methylene blue adsorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. A. A. Soler-Illia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soler-Illia, G.J.A.A., Angelomé, P.C., Fuertes, M.C. et al. Mesoporous hybrid and nanocomposite thin films. A sol–gel toolbox to create nanoconfined systems with localized chemical properties. J Sol-Gel Sci Technol 57, 299–312 (2011). https://doi.org/10.1007/s10971-010-2172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2172-2

Keywords

Navigation