Skip to main content
Log in

Synthesis and characterization of SiO2–CrO3, SiO2–MoO3, and SiO2–WO3 mixed oxides produced using the non-hydrolytic sol–gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica-based mixed oxide xerogels, namely SiO2–CrO3, SiO2–MoO3, and SiO2–WO3, were prepared using the non-hydrolytic sol–gel process. The materials were synthesized using metal chloride:tetraethoxysilane (TEOS) molar ratios of 0.1:2; 0.2:2 and 0.4:2 for each metal chloride and 1:2 SiCl4:TEOS molar ratio. All of the xerogels containing Cr, Mo or W had considerably greater surface areas than that of SiO2. The small angle X-ray scattering experiments suggest that the surface roughness of the aggregates in SiO2–CrO3 is less than that of SiO2–MoO3 and SiO2–WO3. The morphological characteristics of the silica-based mixed oxide xerogels were not affected by the nature and amount of metal chloride employed in the synthesis. An irregular morphology was observed for SiO2–CrO3, SiO2–MoO3 and SiO2–WO3, but a lamellar structure was observed for SiO2. X-ray photoelectron spectroscopy analysis suggests that tungsten species were preferentially distributed on the outmost part of the grain. The resulting particle diameter was shown to be lower for the mixed oxides compared to that of bare silica. Furthermore, the presence of metals (Cr, Mo and W) on silica caused a decrease in the size of the particles as the atomic radii of these metals increased. According to the Fourier transform infrared spectroscopy and Raman, Cr, Mo and W were incorporated within the silica framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 3

Similar content being viewed by others

References

  1. Wachs IE, Roberts CA (2010) Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chem Soc Rev 39:5002–5017

    Article  Google Scholar 

  2. Arzoumanian H, Castellanos NJ, Martinez FO, Páez-Mozo EA, Ziarelli F (2010) Silicon-assisted direct covalent grafting on metal oxide surfaces: synthesis and characterization of carboxylate N, N′-ligands on TiO2. Eur J Inorg Chem 11:1633–1641

    Article  Google Scholar 

  3. Irurzun VM, Tan Y, Resasco DE (2009) Sol–gel synthesis and characterization of Co–Mo/Silica catalysts for single-walled carbon nanotube production. Chem Mater 21(11):2238–2246

    Article  Google Scholar 

  4. Gao G, Feng W, Wu G, Shen J, Zhang Z, Jin X, Zhang Z, Du A (2012) An investigation on the assembling of WO3 particles on the matrix of silica solution. J Sol–Gel Sci Technol 64:427–435

    Article  Google Scholar 

  5. Wachs IE (2005) Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today 100:79–94

    Article  Google Scholar 

  6. De Boer M, Van Dillen AJ, Koningsberger DC, Geus JW, Vuurman MA, Wachs IE (1991) Remarkable spreading behavior of molybdena on silica catalysts. An in situ EXAFS-Raman study. Catal Lett 11:227–240

    Article  Google Scholar 

  7. Van Schalkwyk C, Spamer A, Moodley DJ, Dube T, Reynhardt J, Botha JM (2003) Application of a WO3/SiO2 catalyst in an industrial environment: part I. Appl Catal A 255:121–131

    Article  Google Scholar 

  8. Choi KY, Tang S (2004) Polymerization rate modeling of ethylene polymerization with supported chromium oxide catalysts. J Appl Polym Sci 91:2923–2927

    Article  Google Scholar 

  9. Li W, Meitzner GD, Borry RW III, Iglesia E (2000) Raman and X-ray absorption studies of Mo species in Mo/H-ZSM5 catalysts for non-oxidative CH4 reactions. J Catal 191:373–383

    Article  Google Scholar 

  10. Thielemann JP, Ressler T, Walter A, Tzolova-Müller G, Hess C (2011) Structure of molybdenum oxide supported on silica SBA-15 studied by Raman, UV–Vis and X-ray absorption spectroscopy. Appl Catal A 399:28–34

    Article  Google Scholar 

  11. Vioux A (1997) Nonhydrolytic sol–gel routes to oxides. Chem Mater 9:2292–2299

    Article  Google Scholar 

  12. Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21:582–596

    Article  Google Scholar 

  13. Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem Eur J 12:72827302

    Article  Google Scholar 

  14. Debecker DP, Mutin PH (2012) Non-hydrolytic sol–gel routes to heterogeneous catalysts. Chem Soc Rev 41:3624–3650

    Article  Google Scholar 

  15. Fisch AG, Cardozo NSM, Secchi AR, Stedile FC, Radtke C, de Sá DS, da Rocha ZN, dos Santos JHZ (2009) Immobilization of zirconocene within silica-tungsten by entrapment: Tuning electronic effects of the support on the supported complex. Appl Catal A 370:114–122

    Article  Google Scholar 

  16. Fisch AG, Petry CF, Pozebon D, Stedile FC, Cardozo NSM, Secchi AR, dos Santos JHZ (2006) Immobilization of zirconocene into silica prepared by non-hydrolytic sol–gel method. Macromol Symp 245–246:77–86

    Article  Google Scholar 

  17. Fisch AG, Cardozo NSM, Secchi AR, Stedile FC, Livotto PR, de As DS, da Rocha ZN, dos Santos JHZ (2009) Immobilization of metallocene within silica-titania by a non-hydrolytic sol–gel method. Appl Catal A 354:88–101

    Article  Google Scholar 

  18. Fisch AG, Cardozo NSM, Secchi AR, Stedile FC, da Silveira NP, dos Santos JHZ (2008) Investigation of silica particle structure containing metallocene immobilized by a sol–gel method. J Non Cryst Solids 354:3973–3979

    Article  Google Scholar 

  19. Hay JN, Haval HM (1998) Preparation of inorganic oxides via a non-hydrolytic sol–gel route. J Sol–Gel Sci Technol 13:109–112

    Article  Google Scholar 

  20. Bourget L, Corriu RJP, Leclereq D, Mutin PH, Vioux A (1998) Non-hydrolytic sol–gel routes to silica. J Non Cryst Solids 242:81–91

    Article  Google Scholar 

  21. Ilavsky J, Jemian PR (2009) Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Crystallogr 42:347–353

    Article  Google Scholar 

  22. Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. Appl Crystallogr 28:717–728

    Article  Google Scholar 

  23. Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. Appl Crystallogr 29:134–146

    Article  Google Scholar 

  24. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company Inc., Indiana, pp 1–509

  25. Fidalgo A, Ilharco LM (2004) Chemical tailoring of porous silica xerogels: local structure by vibrational spectroscopy. Chem Eur J 10(2):392–398

    Article  Google Scholar 

  26. Cappeletti LB, Moncada E, Poisson J, Butler I, dos Santos JHZ (2013) Determination of the network structure of sensor materials prepared by three different sol–gel routes using Fourier transform infrared spectroscopy (FT-IR). Appl Spectrosc 67(4):441

    Article  Google Scholar 

  27. Ressler T (1998) High-pressure EXAFS and EDXRD K investigation of unit cell parameters of SnO. J Synch Rad 5:118

    Article  Google Scholar 

  28. Newville M (2001) IFEFFIT: interactive EXAFS analysis and FEFF fitting. J Synch Rad 8:322–324

    Article  Google Scholar 

  29. Mustre de Leon J, Rehr JJ, Zabinsky SI, Albers RC (1991) Ab initio curved-wave X-ray-absorption fine structure. Phys Rev B 44:4146–4156

    Article  Google Scholar 

  30. Silveira F, Brambilla R, da Silveira NP, do Alves MCM, Stedile FC, Pergher SBC, dos Santos JHZ (2010) Effect of textural characteristics of supported metallocenes on ethylene polymerization. J Mater Sci 45:1760–1768

    Article  Google Scholar 

  31. Fisch AG, Da Silveira N Jr, Cardozo NSM, Secchi AR, dos Santos JHZ, Soares JBP (2013) Direct production of ultra-high molecular weight polyethylene with oriented crystalline microstructures. J Mol Catal A: Chem 366:74–83

    Article  Google Scholar 

  32. Wooster NZ (1930) International center for diffraction data. Kristall 74:363

    Google Scholar 

  33. Almeida RM (2004) Handbook of sol–gel science and technology: processing, characterization and applications. Volume II: characterization of sol–gel materials and products. Kluwer Academic Press, New York

    Google Scholar 

  34. Almeida RM, Guiton TA, Pantano CG (1990) Detection of LO Mode in ν-SiO2 by infrared diffuse reflectance spectroscopy. J Non Cryst Solids 119(2):238–241

    Article  Google Scholar 

  35. Fidalgo A, Ciriminna R, Ilharco LM, Pagliaro M (2005) Role of the alkyl–alkoxide precursor on the structure and catalytic properties of hybrid sol–gel catalysts. Chem Mater 17(26):6686–6694

    Article  Google Scholar 

  36. Morais EC, Correa GG, Brambilla R, Radtke C, Baibich IM, dos Santos JHZ (2013) The interaction of encapsulated pharmaceutical drugs with a silica matrix. Colloids Surf B Biointerfaces 103:422–429

    Article  Google Scholar 

  37. Lana SLB, Seldon AB (1998) X-ray diffraction studies of sol–gel derived ORMOSILs based on combinations of tetramethoxysilane and trimethoxysilane. J Sol–Gel Sci Technol 13(1–3):461–466

    Article  Google Scholar 

  38. Lee EL, Wachs IE (2007) In situ spectroscopic investigation of the molecular and electronic structures of SiO2 supported surface metal oxides. J Phys Chem C 111:14410–14425

    Article  Google Scholar 

  39. Borghesi A, Guizzetti G, Marabelli F, Nosenzo L, Reguzzoni E (1984) Far-infrared optical properties of CrC13 and CrBr 3. Solid State Commun 52(4):463–465

    Article  Google Scholar 

  40. Zhang Q, Wang Y, Ohishi Y, Shihido T, Takehira K (2001) Vanadium-containing MCM-41 for partial oxidation of lower alkanes. J Catal 202:308–318

    Article  Google Scholar 

  41. Takehira K, Ohishi Y, Shishido T, Kawabata T, Takaki K, Zhang QH, Wang Y (2004) Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO2. J Catal 224:404–416

    Article  Google Scholar 

  42. Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2005) The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods. Chem Rev 105:115–184

    Article  Google Scholar 

  43. Naydenov V, Tosheva L, Sterte J (2002) Spherical silica macrostructures containing vanadium and tungsten oxides assembled by the resin templating method. Microp Mosop Mat 55:253–263

    Google Scholar 

  44. Tromp M, Moulin J, Reid G, Evans J (2007) Cr K-Edge XANES spectroscopy: ligand and oxidation state dependence—what is oxidation state? AIP Conf Proc 882:699–701

    Article  Google Scholar 

Download references

Acknowledgments

This project was partially financed by CNPq and FAPERGS. A. Bernardes thanks CAPES for the Grant, and the authors are thankful to the LNLS (Project D11A-SAXS1-8691) for the measurements at the SAXS beamline and (Project XAFS1-9929) for the measurements at the EXAFS beamline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henrique Z. dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardes, A.A., Radtke, C., Alves, M.C.M. et al. Synthesis and characterization of SiO2–CrO3, SiO2–MoO3, and SiO2–WO3 mixed oxides produced using the non-hydrolytic sol–gel process. J Sol-Gel Sci Technol 69, 72–84 (2014). https://doi.org/10.1007/s10971-013-3188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3188-1

Keywords

Navigation