Skip to main content
Log in

Influence of a co-substituted A-site on structural characteristics and ferroelectricity of (Pb, Ba, Ca)TiO3 complex perovskites: analysis of local-, medium- and long-range order

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Thin films of A-site co-substituted, PbTiO3 (PTO) by Ba2+ and Ca2+, i.e., PBCT70, PBCT60, PBCT50 and PBCT40 were fabricated on Pt/Ti/SiO2/Si substrates by chemical solution deposition. Structures of the samples were investigated from the viewpoint of local-, medium- and long-range order by X-ray absorption near structure (XANES), micro-Raman and infrared spectroscopies and by X-ray diffraction (XRD). The films thickness were determined by using field-emission scanning electron microscope. The experimental results demonstrate that BaO12 clusters are the critical dominant ferroelectricity cause in PBCT thin films rather than CaO12 clusters. XRD analysis which was applied to investigate the crystal symmetry indicates the absence of long-range structural distortion for samples at higher concentrations of Ba2+ and Ca2+. However, an analysis of structural medium- and local-range order such as infrared, micro-Raman and XANES spectroscopies revealed that symmetry changes are much more prominent; i.e., local structural distortions remain. Temperature-dependent dielectric permittivity measurements confirmed a decreasing ferroelectric-to-paraelectric phase transition temperature and showed a broad phase transition with an increase in BaO12 and CaO12 clusters. In addition, the lack of long-range polar ordering for the ferroelectric dipole caused by symmetry changes decreases the remanent polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fu C, Huang Z, Li J, Guo D (2010) J Electr Mater 39:258

    Article  Google Scholar 

  2. Pontes DSL, Gracia L, Pontes FM, Beltran A, Andres J, Longo E (2012) J Mater Chem 22:6586

    Article  Google Scholar 

  3. Sheng G, Hu JM, Zhang JX, Li YL, Liu ZK, Chen LQ (2012) Acta Mater 60:3296

    Article  Google Scholar 

  4. Montenegro MJ, Lippert T, Müller S, Weidenkaff A, Wokaun A (2004) Handai Nanophotonics 1:251

    Article  Google Scholar 

  5. Shuhui Y, Kui Y, Francis EHT (2007) J Sol Gel Sci Technol 42:357

    Article  Google Scholar 

  6. Chang CC, Chu KP, Lai YC (2005) Tamkang J Sci Eng 8:203

    Google Scholar 

  7. Moret MP, Devillers MAC, Wörhoff K, Larsen PK (2002) J Appl Phys 92:468

    Article  Google Scholar 

  8. Shung KK, Cannata JM, Zhou QF (2007) J Electroceram 19:139

    Article  Google Scholar 

  9. Chang CC, Lai YC (2007) J Appl Phys 101:104106

    Article  Google Scholar 

  10. Kholkin AL, Bdikin I, Yuzyuk YI, Almeida A, Chaves MR, Calzada ML, Mendiola J (2004) Mater Chem Phys 85:176

    Article  Google Scholar 

  11. Person PN, Doriguetto AC, Mastelaro VR, Lopes LP, Mascarenhas YP, Michalowicz A, Eiras JA (2004) J Phys Chem B 108:14840

    Article  Google Scholar 

  12. Roy A, Gupta R, Garg A (2012) Adv Condens Matter Phys 2012:1

    Article  Google Scholar 

  13. Yoneda Y, Sakamoto W (2011) J Phys Condens Matter 23:015902

    Article  Google Scholar 

  14. Solopan SA, V’yunov OI, Belous AG, Tovstolytkin AI, Kovalenko LL (2010) J Eur Ceram Soc 30:259

    Article  Google Scholar 

  15. Stoupina S, Chattopadhyaya S, Bolinb T, Segrea CU (2007) Solid State Commun 144:46

    Article  Google Scholar 

  16. Stein DM, Suchomel MR, Davies PK (2006) App Phys Lett 89:132907

    Article  Google Scholar 

  17. Bretos I, Ricote J, Jiménez R, Mendiola J, Riobóo RJJ, Calzada ML (2005) J Eur Ceram Soc 25:2325

    Article  Google Scholar 

  18. Paris EC, Gurgel MFC, Joya MR, Casali GP, Paiva-Santos CO, Boschi TM, Pizani PS, Varela JA, Longo E (2010) J Phys Chem Solids 71:12

    Article  Google Scholar 

  19. Wang H, Wang L, Liu JB, Wang B, Yan H (2003) Mater Sci Eng B 99:495

    Article  Google Scholar 

  20. Chen HY, Wu JM, Huang HE, Bor HY (2007) J Cryst Growth 308:213

    Article  Google Scholar 

  21. Mastelaro VR, Neves PP, De Lazaro SR, Longo E, Michalowicz A, Eiras JA (2006) J Appl Phys 99:044104

    Article  Google Scholar 

  22. Bu SD, Lee MK, Eom CB, Tian W, Pan XQ, Streiffer SK, Krajewski JJ (2001) Appl Phys Lett 79:3482

    Article  Google Scholar 

  23. Kanai H, Fukazawa T, Furukawa O, Yamahita Y (2005) J Am Ceram Soc 80:594

    Article  Google Scholar 

  24. Raman K, Chandramouli K (2010) Ceram Silikáty 54:303

    Google Scholar 

  25. Qi T (2010) Phys Rev B 82:134113

    Article  Google Scholar 

  26. Sun X, Huang H, Wang S, Li M, Zhao XZ (2008) Thin Solid Films 516:1308

    Article  Google Scholar 

  27. Zhou H, Wu G, Qin N, Bao D (2010) J Am Ceram Soc 93:2109

    Article  Google Scholar 

  28. Abdelmoula N, Chaabane H, Khemakhem H, Von der MR, Simon A (2006) Solid State Sci 8:880

    Article  Google Scholar 

  29. Liu W, Sun X, Han H, Lei M, Zhao XZ (2006) Appl Phys Lett 89:163122

    Article  Google Scholar 

  30. Qu W, Tan X (2006) Thin Solid Films 496:383

    Article  Google Scholar 

  31. Ferrarelli MC (2011) J Mater Chem 21:6292

    Article  Google Scholar 

  32. Zheng H, Bagshaw H, Csete de Gyorgyfalva GDC, Reaney IM, Ubic R, Yarwood J (2003) J Appl Phys 94:2948

    Article  Google Scholar 

  33. Huang L, Chen Z, Wilson JD, Banerjee S, Robinson RD, Herman IP, Laibowitz R, O’Brien S (2006) J Appl Phys 100:034316

    Article  Google Scholar 

  34. Freire JD, Katiyar RS (1998) Phys Rev B 37:2074

    Article  Google Scholar 

  35. Ju L, Sabergharesou T, Stamplecoskie KG, Hegde M, Wang T, Combe NA, Wu H, Radovanovic PV (2012) J Am Ceram Chem Soc 134:1136

    Article  Google Scholar 

  36. Burns G, Scott BA (1970) Phys Rev Lett 25:1191

    Article  Google Scholar 

  37. Sivasubramanian V, Murthy VRK, Viswanathan B, Sieskind M (1996) J Phys Condens Matter 8:2447

    Article  Google Scholar 

  38. Adams DM (1967) Metal-Ligand and Related Vibration. Edward Arnold, London

    Google Scholar 

  39. Chen HY, Lin J, Tan KL, Feng ZC (1996) Thin Solid Films 289:59

    Article  Google Scholar 

  40. Jaouen N (2007) Phys Rev B 75:224115

    Article  Google Scholar 

  41. Mesquita A, Michalowicz A, Mastelaro VR (2012) J Appl Phys 111:104110

    Article  Google Scholar 

  42. Frenkel AI, Pease DM (2004) Phys Rev B 70:014106

    Article  Google Scholar 

  43. Vedrinskii et al (1998) J Phys Condens Mat 10:9561

    Article  Google Scholar 

  44. Pontes FM, Pontes DSL, Leite ER, Longo E, Santos EMS, Mergulhão S, Chiquito A, Pizani PS, Lanciotti F Jr, Boschi TM, Varela JA (2002) J Appl Phys 91:6650

    Article  Google Scholar 

  45. Levin I, Krayzman V, Woicik JC (2013) Appl Phys Lett 102:162906

    Article  Google Scholar 

  46. Jayanthi S, Kutty TRN (2004) Mater Sci Eng, B 110:202

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Brazilian agencies FAPESP, CNPq and CAPES. We thank CEPID/CMDMC/INCTMN/CDMF. FAPESP process nos. 08/57150-6 and 11/20536-7. This research was partially performed at LNLS, Campinas, SP, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Pontes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontes, D.S.L., Pontes, F.M., da Silva, L.F. et al. Influence of a co-substituted A-site on structural characteristics and ferroelectricity of (Pb, Ba, Ca)TiO3 complex perovskites: analysis of local-, medium- and long-range order. J Sol-Gel Sci Technol 69, 605–616 (2014). https://doi.org/10.1007/s10971-014-3265-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3265-0

Keywords

Navigation