Skip to main content

Advertisement

Log in

Ureasil–polyether hybrid blend with tuneable hydrophilic/hydrophobic features based on U-PEO1900 and U-PPO400 mixtures

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Urea-cross-linked polyether-siloxane hybrid blends with tuneable hydrophilic/hydrophobic features were prepared from a mixture of poly(ethylene oxide) (PEO1900) and poly(propylene oxide) (PPO400), hybridized by end-chain functionalization with (3-isocyanatopropyl)triethoxysilane. The aim of this study was to demonstrate that the combination of the different polyether phases produces materials with hydrophilic and hydrophobic properties. An anti-fog coating and a transparent monolithic swellable hydrogel were produced from the PEO1900 hybrid. Swellability and drug release profiles could be easily tuned by varying the ureasil–PEO/ureasil–PPO ratio in the hybrid matrix. Differential scanning calorimetry (DSC) and small angle X-ray scattering (SAXS) analyses indicated that the nanostructure of the hybrid blends could be described by the existence of a biphasic mixture of PEO1900-rich and PPO400-rich phases, with a fraction of the lamellar domains being derived from the PEO1900 crystallinity. A correlation between the nanoscopic features and the kinetics of the swelling mechanism is proposed, based on the results of in situ SAXS analyses. In vitro monitoring using UV–Vis spectroscopy indicated that the kinetics of drug release from the PEO1900:PPO400 hybrid blends could be controlled by varying the proportions of the hydrophilic (PEO1900) and hydrophobic (PPO400) hybrids. The response to pH change and to application of a magnetic field to the PEO1900-magnetite nanocomposite indicated that the production of stimuli-responsive delivery devices based on ureasil–PE should be feasible in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Huang H, Orler B, Wilkes GL (1987) Macromolecules 20:1322–1330

    Article  Google Scholar 

  2. Parikh AN, Schivley MA, Koo E, Seshadri K, Aurentz D, Mueller K, Allara DL (1997) J Am Chem Soc 119:3135–3143

    Article  Google Scholar 

  3. Boury B, Corriu RJP, Nunez R (1998) Chem Mater 10:1795–1804

    Article  Google Scholar 

  4. Sanchez C, Soler-Illia GJA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Chem Mater 13:3061–3083

    Article  Google Scholar 

  5. Bonderer LJ, Studart AR, Gauckler L (2008) Science 319:1069–1072

    Article  Google Scholar 

  6. Sanchez C, Belleville P, Popall M, Nicole L (2011) Chem Soc Rev 40:696–753

    Article  Google Scholar 

  7. Rossi D, Carpi F, Scilingo EP (2005) Adv Colloid Interf Sci 116:165–178

    Article  Google Scholar 

  8. Walcarius A, Collinson MM (2009) Ann Rev Anal Chem 2:121–127

    Article  Google Scholar 

  9. Descalzo AB, Martinez-Mánez R, Sancenón F, Hoffmann K, Rurack K (2006) Angew Chem Int Ed 45:5924–5948

    Article  Google Scholar 

  10. Pardo R, Zayat M, Levy D (2011) Chem Soc Rev 40:672–687

    Article  Google Scholar 

  11. Kawasaki N, Wang H, Nakanishi R, Hamanaka S, Kitaura R, Shinohara H, Yokoyama T, Yoshikawa H, Awaga K (2011) Angew Chem Int Ed 50:1–12

    Article  Google Scholar 

  12. Ruiz-Hitzky E, Aranda P, Dardera M, Rytwo G (2010) J Mater Chem 20:9306–9321

    Article  Google Scholar 

  13. Zhu Y, Shi J, Shen W, Dong X, Feng J, Ruan M, Li Y (2005) Angew Chem Int Ed 44:5083–5087

    Article  Google Scholar 

  14. Nakanishi K, Tanaka N (2007) Acc Chem Res 40:863–873

    Article  Google Scholar 

  15. Carlos LD, Ferreira RAS, Bermudez VZ, Ribeiro SJL (2009) Adv Mater 21:509–534

    Article  Google Scholar 

  16. Dahmouche K, Atik M, Mello NC, Bonagamba NJ, Panepucci H, Aegerter MA (1997) J Sol Gel Sci Tech 8:711–715

    Google Scholar 

  17. Dahmouche K, De Souza PH, Bonagamba TJ, Paneppucci H, Judeinstein P, Pulcinelli SH, Santilli CV (1998) J Sol Gel Sci Tech 13:909–913

    Article  Google Scholar 

  18. Armand M, Poinsignon C, Sanchez JY, Bermudez VZ (1991) Fr Pat 91:11349

    Google Scholar 

  19. Bermudez VZ (1992) PhD. thesis.University of Grenoble, France

  20. Silva MM, Bermudez VZ, Carlos LD, Almeida APP, Smith MJ (1999) J Mater Chem 9:1735–1740

    Article  Google Scholar 

  21. Dahmouche K, Santilli CV, Pulcinelli SH, Craievich AF (1999) J Phys Chem B 103:4937–4942

    Article  Google Scholar 

  22. Dahmouche K, Carlos LD, Santilli CV, Bermudez VZ, Craievich AF (2002) J Phys Chem B 106:4377–4382

    Article  Google Scholar 

  23. Sarmento VHV, Dahmouche K, Pulcinelli SH, Santilli CV (2005) J Mater Chem 15:3962–3972

    Article  Google Scholar 

  24. Gonçalves C, Silva NJO, Bermudez VZ, Ferreira RAS, Carlos LD, Dahmouche K, Santilli CV, Ostrovskii D, Vilela ICC, Craievich AF (2005) J Phys Chem B 109:20093–20104

    Article  Google Scholar 

  25. Chaker JA, Santilli CV, Pulcinelli SH, Dahmouche K, Briois V, Judeinstein P (2007) J Mater Chem 17:744–757

    Article  Google Scholar 

  26. Bekiari V, Lianos P (2006) Chem Mater 18:4142–4146

    Article  Google Scholar 

  27. Mello NC, Bonagamba TJ, Panepucci H, Dahmouche K, Judeinstein P, Aegerter MA (2000) Macromolecules 33:1280–1288

    Article  Google Scholar 

  28. Nunes SC, Bermudez VZ, Silva MM, Barros S, Smith MJ, Morales E, Carlos LD, Rocha J (2005) Solid State Ionics 176:1591–1599

    Article  Google Scholar 

  29. Nunes SC, Bermudez VZ, Silva MM, Smith MJ, Ostrovskii D, Ferreira RAS, Carlos LD, Rocha J, Gonçalves A, Fortunato E (2007) J Mater Chem 17:4239–4248

    Article  Google Scholar 

  30. Oliveira DC, Messaddeq Y, Dahmouche K, Ribeiro SJL, Gonçalves RR, Vesperini A, Gindre D, Nunzi JM (2006) J Sol Gel Sci Tech 40:359–363

    Article  Google Scholar 

  31. Moleski R, Stathatos E, Bekiari V, Lianos P (2002) Thin Solid Films 416:279–283

    Article  Google Scholar 

  32. Carlos LD, Bermudez VZ, Ferreira RAS (1999) J Non Cryst Solids 247:203–208

    Article  Google Scholar 

  33. Fu LS, Ferreira RAS, Silva NJO, Fernandes JA, Claro PR, Goncalves IS, Bermudez VZ, Carlos LD (2005) J Mater Chem 15:3117–3125

    Article  Google Scholar 

  34. Stathatos E, Lianos P, Vuk AS (2004) Adv Func Mater 14:45–48

    Article  Google Scholar 

  35. Chiavacci LA, Dahmouche K, Silva NJO, Carlos LD, Amaral VS, Bermudez VZ, Pulcinelli SH, Santilli CV, Briois V, Craievich AF (2004) J Non Cryst Solids 345:585–590

    Article  Google Scholar 

  36. Silva NJO, Amaral VS, Bermudez VZ, Nunes SC, Ostrovskii D, Rocha J, Carlos LD (2005) J Mater Chem 15:484–490

    Article  Google Scholar 

  37. Boev VI, Juste JP, Pastoriza-Santos I, Silva CJR, Gomes MDJ, Marzan LM (2004) Langmuir 20:10268–10272

    Article  Google Scholar 

  38. Riccardi CS, Dahmouche K, Santilli CV, Costa PI, Yamanaka H (2006) Talanta 70:637–643

    Article  Google Scholar 

  39. Molina EF, Marçal L, Carvalho HWP, Nassar EJ, Ciuffi KJ (2013) Polym Chem 4:1575–1582

    Article  Google Scholar 

  40. Santilli CV, Chiavacci LA, Lopes L, Pulcinelli SH, Oliveira AG (2009) Chem Mater 21:463–467

    Article  Google Scholar 

  41. Lopes L, Molina EF, Chiavacci LA, Santilli CV, Briois V, Pulcinelli SH (2012) RSC Adv 2:5629–5636

    Article  Google Scholar 

  42. Molina EF, Pulcinelli SH, Santilli CV, Blanchandin S, Briois V (2010) J Phys Chem B 114:3461–3466

    Article  Google Scholar 

  43. Molina EF, Pulcinelli SH, Santilli CV, Briois V (2012) J Phys Chem B 116:7931–7939

    Article  Google Scholar 

  44. Briois V, Fonda E, Belin S, Barthe L, Fontaine CL, Langlois F, Ribbens M, Villain F (2001) UVX 2010 EDP Sciences 41

  45. Pepas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Adv Mater 18:1345–1360

    Article  Google Scholar 

  46. Nishi T, Wang TT (1975) Macromolecules 8:909–915

    Article  Google Scholar 

  47. Mya KY, Pramoda KP, He CB (2006) Polymer 47:5035–5043

    Article  Google Scholar 

  48. Chatterjee T, Lorenzo AT, Krishnamoorti R (2011) Polymer 52:4938–4946

    Article  Google Scholar 

  49. Weiyu C, Tashiro K, Hanesaka M, Takeda S, Masunaga H, Sasaki S, Takata M (2009) J Phys Chem B 113:2338–2346

    Article  Google Scholar 

  50. Thomas NL, Windle AH (1982) Polymer 23:529–542

    Article  Google Scholar 

  51. Manjanna KM, Shivakumar B, Kumar TMP (2009) Int J Pharm Tech Res 1:317–327

    Google Scholar 

  52. Kozakevych RB, Bolbukh YM, Tertykh VA (2013) World J Nano Sci Eng 3:69–78

    Article  Google Scholar 

  53. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Int J Pharm 15:25–35

    Article  Google Scholar 

  54. Siepmann J, Peppas NA (2001) Adv Drug Deliv Rev 48:139–157

    Article  Google Scholar 

  55. Schlossbauer A, Warncke S, Gramlich PME, Kecht J, Manetto J, Carell T, Bein T (2010) Angew Chem Int Ed 49:4734–4737

    Article  Google Scholar 

  56. Chen S, Li Y, Guo C, Wang J, Ma J, Liang X, Yang L, Liu H (2007) Langmuir 23:12669–12676

    Article  Google Scholar 

  57. Bawa P, Pillay V, Choonara YE, Toit LC (2009) Biomed Mater 4:022001–022016

    Article  Google Scholar 

  58. Brandl F, Kastner F, Gschwind RM, Blunk T, Tebmar J, Gopferich A (2010) J Control Rel 142:221–228

    Article  Google Scholar 

  59. Balogh D, Vered R, Freeman R, Willner I (2011) J Am Chem Soc 133:6533–6536

    Article  Google Scholar 

  60. Kong SD, Zhang W, Lee JH, Brammer K, Lal R, Karin M, Jin S (2010) Nano Lett 10:5088–5092

    Article  Google Scholar 

  61. Kost J, Noecker R, Kunica E, Langer R (1985) J Biomed Mater Res 19:935–941

    Article  Google Scholar 

  62. Liu TY, Liu KH, Liu DM, Chen SY, Chen IW (2008) Adv Funct Mater 18:1–8

    Google Scholar 

  63. Paoli VM, Lacerda SHP, Spinu L, Ingber B, Rosenzweig Z, Rosenzweig N (2006) Langmuir 22:5894–5899

    Article  Google Scholar 

  64. Souza KC, Ardisson EJD, Sousa EEMB (2009) J Mater Sci Mater Med 20:507–512

    Article  Google Scholar 

  65. Bini RA, Marques RFC, Santos Chaker JA, Miguel Jafelicci M (2012) J Magn Magn Mater 32:4534–4539

    Google Scholar 

  66. Cai K, Luo Z, Hu Y, Chen X, Liao Y, Yang L, Deng L (2009) Adv Mater 21:4045–4049

    Article  Google Scholar 

  67. Qin J, Asempah I, Laurent S, Fornara A, Muller RN, Muhammed M (2009) Adv Mater 21:1354–1357

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the Brazilian agencies CAPES, CNPq, and FAPESP, and the French agency COFECUB (Project Number: Ph. 564/07). SOLEIL (France) and LNLS (Brazil) are gratefully acknowledged for technical and financial assistance during the SAXS and XAS measurements. The authors would like to thank Dr. Edesia Martins Barros de Sousa (CDTN–CNEN–Belo Horizonte, MG–Brazil) for the help in the delivery profile measurements under magnetic field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso V. Santilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina, E.F., Jesus, C.R.N., Chiavacci, L.A. et al. Ureasil–polyether hybrid blend with tuneable hydrophilic/hydrophobic features based on U-PEO1900 and U-PPO400 mixtures. J Sol-Gel Sci Technol 70, 317–328 (2014). https://doi.org/10.1007/s10971-014-3300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3300-1

Keywords

Navigation