Skip to main content
Log in

The role of the sol–gel route on the interaction between rhodamine B and a silica matrix

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of silica xerogels having rhodamine B (RhB) as a template and Ti centers were synthesized by distinct sol–gel routes, namely, acid-catalyzed, base-catalyzed, acid-catalyzed with base-catalyzed (two steps) hydrolytic routes and a FeCl3-catalyzed non-hydrolytic route. The interaction of RhB with the prepared silica matrix was investigated by Fourier transform infrared spectroscopy, attenuated total reflectance, diffuse reflectance spectroscopy in the ultraviolet–visible region, Raman spectroscopy, mass spectrometry, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and confocal microscopy. Raman spectroscopy suggested the presence of Ti–O and Si–O–Ti moieties within the silica matrix. Infrared band shifts provided insight into potential interaction sites. Taking into account the results from ART, XPS, PL and confocal microscopy, encapsulation of RhB preferentially occurs inside the silica network for acid 1, basic and two-steps routes, and the presence of Ti occurs on the surface of the silica occurs for acid 2, basic and two-steps routes. Also, we have shown that although the structural characteristics of the encapsulated and extracted systems are affected by the route, the molecular structure is conserved during and after the encapsulation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Matsui K (2005) In: Sakka S, Kozuka H (eds) Entrapment of organic molecules, 1st edn. Kluwer Academic Publishers, New York

    Google Scholar 

  2. Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco LM, Pagliaro M (2013) The sol-gel route to advanced silica-based materials and recent applications. Chem Rev 113:6592–6620

    Article  Google Scholar 

  3. Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol–gel derived materials. Anal Chim Acta 461:1–36

    Article  Google Scholar 

  4. Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol–gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron 22:2387–2399

    Article  Google Scholar 

  5. Xu G, Zhang H, Zhong M, Zhang T, Lu X, Kan X (2014) Imprinted sol–gel electrochemical sensor for melamine direct recognition and detection. J Electroanal Chem 713:112–118

    Article  Google Scholar 

  6. Fisch AG, Cardozo NSM, Secchi AR, Stedile FC, Silveira NPd, Santos JHZd (2008) Investigation of silica particle structure containing metallocene immobilized by a sol–gel method. J Non-Cryst Solids 354:3973–3979

    Article  Google Scholar 

  7. Parambadath S, Rana VK, Zhao D, Ha C-S (2011) N, N′-diureylenepiperazine-bridged periodic mesoporous organosilica for controlled drug delivery. Microporous Mesoporous Mater 141:94–101

    Article  Google Scholar 

  8. Perumal S, Ramadass Sk, Madhan B (2014) Sol–gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing. Eur J Pharm Sci 52:26–33

    Article  Google Scholar 

  9. Capeletti LB, Dos Santos JHZ, Moncada E, Da Rocha ZN, Pepe IM (2013) Encapsulated alizarin red species: the role of the sol–gel route on the interaction with silica matrix. Powder Technol 237:117–124

    Article  Google Scholar 

  10. Morais EC, Correa GG, Brambilla R, Radtke C, Baibich IM, Santos JHZd (2013) The interaction of encapsulated pharmaceutical drugs with a silica matrix. Colloid Surf B 103:422–429

    Article  Google Scholar 

  11. Farrington K, Regan F (2009) Molecularly imprinted sol gel for ibuprofen: an analytical study of the factors influencing selectivity. Talanta 78:653–659

    Article  Google Scholar 

  12. Gupta R, Kumar A (2011) Synthesis and characterization of sol–gel-derived molecular imprinted polymeric materials for cholesterol recognition. J Sol–Gel Sci 58:182–194

    Article  Google Scholar 

  13. Lee SM, Lee BS, Byun TG, Song KC (2010) Preparation and antibacterial activity of silver-doped organic–inorganic hybrid coatings on glass substrates. Colloid Surf A 355:167–171

    Article  Google Scholar 

  14. Juszczak LJ, Friedman JM (1999) UV resonance Raman spectra of ligand binding intermediates of sol–gel encapsulated hemoglobin. J Biol Chem 274:30357–30360

    Article  Google Scholar 

  15. Martínez-Zapata O, Méndez-Vivar J, Bosch P, Lara VH (2011) Synthesis and characterization of amorphous aluminosilicates prepared by sol–gel to encapsulate organic dyes. J Non-Cryst Solids 357:3480–3485

    Article  Google Scholar 

  16. Albarran L, López T, Quintana P, Chagoya V (2011) Controlled release of IFC-305 encapsulated in silica nanoparticles for liver cancer synthesized by sol–gel. Colloids Surf A 384:131–136

    Article  Google Scholar 

  17. Fidalgo A, Ilharco L (2001) The defect structure of sol-gel derived silica/polytetrahydrofuran hybrid films by FTIR. J Non-Cryst Solids 283:144–154

    Article  Google Scholar 

  18. Cappeletti LB, Moncada E, Poisson J, Butler IS, Dos Santos JHZ (2013) Determination of the network structure of sensor materials prepared by three different sol–gel routes using Fourier transform infrared spectroscopy (FT-IR). Appl Spectrosc 67(4):441–447

    Article  Google Scholar 

  19. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York

    Google Scholar 

  20. Curran MD, Stiegman AE (1999) Morphology and pore structure of silica xerogels made at low pH. J Non-Cryst Solids 249:62–68

    Article  Google Scholar 

  21. Morais EC, Correa GG, Brambilla R, Livotto PR, dos Santos JHZ, Cardoso MB (2012) Silica imprinted materials containing pharmaceuticals as a template: textural aspects. J Sol–Gel Sci Technol 64:324–334

    Article  Google Scholar 

  22. Escobar CC, dos Santos JHZ (2014) Effect of the sol–gel route on the textural characteristics of silica imprinted with rhodamine B. J Sep Sci. doi:10.1002/jssc.201301143

    Google Scholar 

  23. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, New York

    Google Scholar 

  24. Krol DM, van Lierop JG (1984) The densification of monolithic gels. J Non-Cryst Solids 63:131–144

    Article  Google Scholar 

  25. Gonzalez-Oliver CJR, James PF, Rawson H (1982) Silica and silica-titania glasses prepared by the sol–gel process. J Non-Cryst Solids 48:129–152

    Article  Google Scholar 

  26. Li X, King TA (1996) Spectroscopic studies of sol–gel-derived organically modified silicates. J Non-Cryst Solids 204:235–242

    Article  Google Scholar 

  27. Liu X, Cui D, Wang Q, Xu H, Li M (2005) Photoluminescence enhancement of ZrO2/rhodamine B nanocomposites. J Mater Sci 40:1111–1114

    Article  Google Scholar 

  28. Ereshchenko AG, Stepantsova NP, Geller BÉ (1971) Infrared spectroscopic study of the action of inorganic peroxides and gamma radiation on the arymethane dye rhodaminde S. J Appl Spectrosc 15:1203–1206

    Article  Google Scholar 

  29. Kerr JL, Baldwin DS, Tobin MJ, Puskar L, Kappen P, Rees GN, Silvester E (2013) High spatial resolution infrared micro-spectroscopy reveals the mechanism of leaf lignin decomposition by aquatic fungi. PLoS One 8:e60857

    Article  Google Scholar 

  30. Wainipee W, Weiss DJ, Sephton MA, Coles BJ, Unsworth C, Court R (2010) The effect of crude oil on arsenate adsorption on goethite. Water Res 44:5673–5683

    Article  Google Scholar 

  31. Wang J-H, Lin MC (2005) Reactions of trimethylindium on TiO2 nanoparticles: experimental and computational study. J Phys Chem 109:20858–20867

    Article  Google Scholar 

  32. Dzherayan TG, Bykov IV, Kostitsyna MV, Shipulo EV, Petrukhin OM, Dunaeva AA, Vladimirova EV (2010) Study of a gentamicin-selective membrane polymer matrix by infrared spectroscopy. J Anal Chem 65:726–731

    Article  Google Scholar 

  33. Low MJD, Cusumano JA (1969) Dual interaction of anisole with surface hydroxyls. Can J Chem 47:3906–3909

    Article  Google Scholar 

  34. Hoffman P, Knozinger EE (1987) Novel aspects of IR Fourier spectroscopy. Surf Sci 188:181

    Article  Google Scholar 

  35. Kowada Y, Ozeki T, Minami T (2005) Preparation of silica-gel film with pH indicators by the sol–gel method. J Sol–Gel Sci Technol 33:175–185

    Article  Google Scholar 

  36. Montero I, Galán L, Najmi O, Albella JM (1994) Disorder-induced vibration-mode coupling in SiO films observed under normal-incidence infrared radiation. Phys Rev A 50:4881–4884

    Google Scholar 

  37. Fidalgo A, Ciriminna R, Ilharco LM, Pagliaro M (2005) Role of the alkyl–alkoxide precursor on the structure and catalytic properties of hybrid sol–gel catalysts. Chem Mater 17:6686–6694

    Article  Google Scholar 

  38. Almeida RM, Guiton TA, Pantano CG (1990) Characterization of silica gels by infrared reflection spectroscopy. J Non-Cryst Solids 121:193–197

    Article  Google Scholar 

  39. Gao X, Wachs IE (1999) Titania–silica as catalysts: molecular structural characteristics and hysic-chemical properties. Catal Today 51:233–254

    Article  Google Scholar 

  40. Moran PD, Bowmaker GA, Cooney RP, Finnie KS, Bartlett JR, Woolfrey JL (1998) Vibrational spectra and molecular association of titanium tetraisopropoxide. Inorg Chem 37:2741–2748

    Article  Google Scholar 

  41. Strunk J, Vining WC, Bell AT (2010) A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48. J Phys Chem C 114:16937–16945

    Article  Google Scholar 

  42. Gao X, Bare SR, Fierro JLG, Banares MA, Wachs IE (1998) Preparation and in-situ spectroscopic characterization of molecularly dispersed titanium oxide on silica. J Phys Chem B 102:5653–5666

    Article  Google Scholar 

  43. Bertoluzza A, Fagnano C, Antonietta Morelli M, Gottardi V, Guglielmi M (1982) Raman and infrared spectra on silica gel evolving toward glass. J Non-Cryst Solids 48:117–128

    Article  Google Scholar 

  44. Morrow BA, Molapo DT (2005) In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  45. Gautam C, Yadav A, Mishra V, Vikram K (2012) Synthesis, IR and Raman spectroscopic studies of (Ba, Sr)TiO3 borosilicate glasses with addition of La2O3. Open J Inorg Non-Met Mater 2:47–54

    Google Scholar 

  46. Cappeletti LB, Moncada E, Poisson J, Butler IS, Dos Santos JHZ (2013) Determination of the network structure of sensor materials prepared by three different sol–gel routes using Fourier transform infrared spectroscopy (FT-IR). Appl Spectrosc 67:441–447

    Article  Google Scholar 

  47. Rao CNR (1975) Ultraviolet and visible spectroscopy. Butter-worth, London

    Google Scholar 

  48. Williamns DH, Fleming I (1966) Spectroscopic methods in organic chemistry. McGraw-Hill Publishing, London

    Google Scholar 

  49. Bertino MF, Gadipalli RR, Martin LA, Rich LE, Yamilov A, Heckman BR, Laventis N, Guha S, Katsoudas J, Divan R, Mancini DC (2007) Quantum dots by ultraviolet and x-ray lithography. Nanotechnology 18:1–6

    Article  Google Scholar 

  50. Zhao Y, Hou S, Liang X, Fang L, Sheng G, Xu F (2010) Si ion implantation-induced defect photoluminescence in silica films. Adv Mater Res 160–162:1450–1457

    Article  Google Scholar 

  51. Nishiguchi H, Zhang JL, Anpo M (2001) Characteristics of the phosphorescence spectra of benzophenone adsorbed on Ti–Al binary oxides. Langmuir 17:3958–3963

    Article  Google Scholar 

  52. Drexhage KH (1976) Fluorescence efficiency of laser dyes. J Res NBS A Phys Chem 80A:421–428

    Article  Google Scholar 

  53. Bockstette M, Wöhrle D, Braun I, Schulz-Ekloff G (1998) Conventional and microwave-assisted crystallization inclusion of substituted Rhodamine derivatives in AlPO4-5. Microporous Mesoporous Mater 23:83–96

    Article  Google Scholar 

  54. Shao Y, Wang L, Zhang J, Anpo M (2006) The photoluminescence of rhodamine B encapsulated in mesoporous Si-MCM-48, Ce-MCM-48, Fe-MCM-48 and Cr-MCM-48 molecular sieves. J Photochem Photobiol A Chem 180:59–64

    Article  Google Scholar 

  55. Yamashita H, Tanaka A, Nishimura M, Koyano K, Tatsumi T, Anpo M (1998) Photochemical properties of rhodamine-B dye molecules included within mesoporous molecular sieves. Stud Surf Sci Catal 117:551–558

    Article  Google Scholar 

  56. Gong JR, Wan LJ, Lei SB, Bai CL, Zhang XH, Lee ST (2005) Direct evidence of molecular aggregation and degradation mechanism of organic light-emitting diodes under joule heating: an STM and photoluminescence study. J Phys Chem B 109:1675–1682

    Article  Google Scholar 

Download references

Acknowledgments

This project was partially financed by the CNPq and FAPERGS. C. Escobar is grateful for the grant provided by CAPES. The authors also thank the LNLS (Project D11A-SAXS1-8691) for the SAXS beamline measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henrique Zimnoch dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Escobar, C.C., Dartora, M.H., Campo, L.F. et al. The role of the sol–gel route on the interaction between rhodamine B and a silica matrix. J Sol-Gel Sci Technol 72, 260–272 (2014). https://doi.org/10.1007/s10971-014-3376-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3376-7

Keywords

Navigation