Skip to main content
Log in

Study of formation of LiCoO2 using a modified Pechini aqueous sol–gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present study the formation of lithium cobaltite using a modified Pechini aqueous sol–gel process was investigated. The gelling processes in the lithium–cobalt–citric acid system in 1.1:1:1 molar ratio was performed at 80 °C using aqueous solutions of 0.25 mol/dm3 of Co(NO3)2·6H2O with Li(NO3)·6H2O or Co(CH3COO)2·6H2O with Li(CH3COO)·2H2O, respectively. The study of the mechanism of gelling of transition metal ion Co(II) in aqueous medium in the presence of lithium ions and citric acid as chelating agents was approached using mainly UV–Vis and FTIR spectroscopic methods. The UV–Vis spectroscopy indicated that the Co(II) ions are in a tetragonal distorted geometry characteristic to a D4h group symmetry in the solutions in the early steps of the gels formation. After gelling at 80 °C it was observed that the symmetry of the Co(II) ions becomes octahedral (Oh). From the FTIR spectra based on the frequency separation between the antisymmetric stretching νas(COO) and symmetric stretching νsym(COO) vibrations, it was identified that the carboxylic groups are bond as a bridging ligands. Using X-ray photoelectron spectroscopy it was identified that the cobalt is present in both final gels as Co(II) ions and the citrate ions are covalently bonded to the cobalt ions. The thermogravimetric/differential thermal analysis showed the thermal stability of the studied gels is higher in the low temperature range for the gels prepared using acetates. Based on the thermal analysis the Li–Co–CA gels were calcinated at 700 °C for 6 h and for each gel a monophasic LiCoO2 was obtained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Park J-H, Kim J-S, Shim E-G, Park K-W, Hong YT, Lee Y-S, Lee S-Y (2010) Electrochem Commun 12:1099–1102

    Article  Google Scholar 

  2. Yazami R, Lebrun N, Bonneau M, Molteni MJ (1995) J Power Sources 54:389–392

    Article  Google Scholar 

  3. Cho J, Kim G (1999) Electrochem Solid State Lett 2(6):253–255

    Article  Google Scholar 

  4. Yamaki JI, Baba Y, Katayama N, Takatsuji H, Egashira M, Okada S (2003) J Power Source 119–121:789–793

    Article  Google Scholar 

  5. Rossen E, Reimers JN, Dahn JR (1993) Solid State Ion 62:53–60

    Article  Google Scholar 

  6. Wang B, Bates JB, Harts FX, Sales BC, Zuhr RA, Robertson JD (1996) J Electrochem Soc 143:3203–3213

    Article  Google Scholar 

  7. Poulsen JM, Mueller-Neuhaus JR, Dahn JR (2000) J Electrochem Soc 147(2):508–516

    Article  Google Scholar 

  8. Cho J (2000) Chem Mater 12:3788–3791

    Article  Google Scholar 

  9. Endo E, Yasuda T, Kita A, Yamaura K, Sekai K (2000) J Electrochem Soc 147(4):1291–1294

    Article  Google Scholar 

  10. Cho J, Kim YJ, Park B (2001) J Electrochem Soc 148(10):A1110–A1115

    Article  Google Scholar 

  11. Jang SW, Lee HY, Lee SJ, Baik HK, Lee SM (2003) Mater Res Bull 38(1):1–9

    Article  Google Scholar 

  12. Gopukumar S, Jeong Y, Kim KB (2003) Solid State Ion 159:223–232

    Article  Google Scholar 

  13. Fu J, Bai Y, Liu C, Yu H, Mo Y (2009) Mater Chem Phys 115:105–109

    Article  Google Scholar 

  14. Amatucci GG, Tarascon JM, Larcher D, Klein LC (1996) Solid State Ion 84:169–180

    Article  Google Scholar 

  15. Tao Y, Zhu B, Chen Z (2007) J Alloys Compd 430:222–225

    Article  Google Scholar 

  16. He P, Wang H, Qia L, Osaka T (2006) J Power Sources 158:529–534

    Article  Google Scholar 

  17. Ying J, Jiang C, Wan C (2004) J Power Sources 129:264–269

    Article  Google Scholar 

  18. Fey GT, Huang DL (1999) Electrochim Acta 45:295–314

    Article  Google Scholar 

  19. Quinlan FT, Vidu R, Predoana L, Zaharescu M, Gartner M, Groza J, Stroeve P (2004) Ind Eng Chem Res 43:2468–2477

    Article  Google Scholar 

  20. Szatvanyi A, Crişan M, Crişan D, Jitianu A, Stanciu L, Zaharescu M (2002) Rev Roum Chim 47(12):1255–1259

    Google Scholar 

  21. Yoon WS, Kim KB (1999) J Power Sources 81–82:517–523

    Article  Google Scholar 

  22. Shlyakhtin OA, Yoon YS, Oh YJ (2003) J Eur Ceram Soc 23:1893–1899

    Article  Google Scholar 

  23. Cho J, Kim GB, Lim HS, Kim CS, Yoo SI (1999) Electrochem Solid State Lett 2(12):607–609

    Article  Google Scholar 

  24. Hildebrandt S, Eva A, Komissinskiy P, Fasel C, Fritsch I, Alff L (2012) J Sol-Gel Sci Technol 63:307–314

    Article  Google Scholar 

  25. Guangfen L, Jing Z (2012) Appl Surf Sci 258:7612–7616

    Article  Google Scholar 

  26. Zhu CQ, Yang CH, Yang WD, Hsieh CY, Ysai HM, Chen YS (2010) J Alloys Compd 496:703–709

    Article  Google Scholar 

  27. Khomane RB, Agrawal AC, Kulkarni BD, Gopukumar S, Sivashanmugam A (2008) Mater Res Bull 43:2497–2503

    Article  Google Scholar 

  28. Zhecheva E, Stoyanova R, Gorova M, Alcantara R, Morales J, Tirado JL (1996) Chem Mater 8:1429–1440

    Article  Google Scholar 

  29. Kang SG, Kang SY, Ryu KS, Chang SH (1999) Solid State Ion 120:155–161

    Article  Google Scholar 

  30. Kushida K, Kuriyama K (2002) J Cryst Growth 237–239:612–615

    Article  Google Scholar 

  31. Yang W-D, Hsieh C-Y, Chuang H-J, Chen Y-S (2010) Ceram Int 36:135–140

    Article  Google Scholar 

  32. Soltanmohammad S, Asgari S (2010) J Nanomater. Article Number: 104012. doi:10.1155/2010/104012

  33. Uchida I, Fujiyoshi H, Waki S (1997) J Power Sources 68:139–144

    Article  Google Scholar 

  34. Lessing PA (1989) Ceram Bull 68:1002–1007

    Google Scholar 

  35. Kim DS, Lee CK, Kim H (2010) Solid State Sci 12:45–49

    Article  Google Scholar 

  36. Porthault H, Le Cras F, Franger S (2010) J Power Sources 195:6262–6267

    Article  Google Scholar 

  37. Patil V, Patil A, Choi J-W, Yoon S-J (2011) Solid State Sci 13:1232–1234

    Article  Google Scholar 

  38. Li L, Chen R, Sun F, Wu F, Liu J (2011) Hydrometallurgy 108:220–225

    Article  Google Scholar 

  39. Rao MC, Hussain OM (2009) IOP Conf Ser Mater Sci Eng 2:012037

    Article  Google Scholar 

  40. Zhu X, Guo Z, Du G, Zhang P, Liu H (2010) Surf Coat Technol 204:1710–1714

    Article  Google Scholar 

  41. Stockhoff T, Gallasch T, Berkemeier F, Schmitz G (2012) Thin Solid Films 520:3668–3674

    Article  Google Scholar 

  42. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    Article  Google Scholar 

  43. Livage J (1998) Catal Today 41:3–19

    Article  Google Scholar 

  44. Pierre AC (1998) Introduction to the sol-gel process. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  45. Predoana L, Jitianu A, Malic B, Zaharescu M (2012) J Am Ceram Soc 95:1068–1076

    Google Scholar 

  46. Kakihana M (1996) J Sol-Gel Sci Technol 6:7–55

    Article  Google Scholar 

  47. Predoana L, Zaharescu M (2011) Sol-gel chemistry of the transitional metals in aqueous solution. In: The sol-gel process, Chap. 14. Nova Publishers, New York, pp 545–569

  48. Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, New York

    Google Scholar 

  49. Ferguson J, Wood TE (1975) Inorg Chem 14:184–189

    Article  Google Scholar 

  50. Ferguson J, Wood TE (1975) Inorg Chem 14:190–192

    Article  Google Scholar 

  51. Galley KD, Palmer RA (1972) Chem Phys Lett 13:176–180

    Article  Google Scholar 

  52. Alcock NW, Tracy VM, Waddington TC (1976) J Chem Soc Dalton. doi:10.1039/DT9760002243

  53. Nakamoto K (2009) Infrared and raman spectra of inorganic and coordination compounds part B., applications in coordination, organometallic and bioinorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  54. Deacon GB, Phillips RJ (1980) Coord Chem Rev 33:227–250

    Article  Google Scholar 

  55. Fuggle JC, Martensson N (1980) J Electron Spectrosc Relat Phenom 21:275–281

    Article  Google Scholar 

  56. Costescu RM, Gheorghe NG, Husanu MA, Lungu GA, Macovei D, Pintilie I, Popescu DG, Teodorescu CM (2012) J Mater Sci 47:7225–7234

    Article  Google Scholar 

  57. Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RM, Gale LH (1981) Surf Interface Anal 3:211–225

    Article  Google Scholar 

  58. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell, Rumble, Jr. JR, NIST X-ray photoelectron spectroscopy database, version 3.5, available online http://srdata.nist.gov/xps/

  59. Predoana L, Jitianu A, Preda S, Malic B, Zaharescu M (2015) J Therm Anal Calorim 119:145–153

    Article  Google Scholar 

  60. Jorgensen CK (1963) Inorganic complexes. Academic Press, New York

    Google Scholar 

  61. Wang H, Jang Y, Huang B, Sadoway D, Chiang YM (1999) J Electrochem Soc 146:473–480

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Jitianu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Predoana, L., Jitianu, A., Voicescu, M. et al. Study of formation of LiCoO2 using a modified Pechini aqueous sol–gel process. J Sol-Gel Sci Technol 74, 406–418 (2015). https://doi.org/10.1007/s10971-014-3611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3611-2

Keywords

Navigation