Skip to main content
Log in

Improvement in electrical properties of sol–gel-derived In-doped ZnO thin film by electron beam treatment

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In-doped ZnO thin films were prepared by a sol–gel spin coating method. Since several issues with In doping have been reported, such as degradation of crystallinity and deterioration of electrical resistivity at high In-doping levels, co-doping with Ga and electron beam treatment was demonstrated in this study. When In dopant was added to the ZnO thin film at 0.5 mol%, it increased the carrier concentration, thereby reducing the resistivity of the film. In contrast, further doping by Ga in the presence of In did not significantly change the electrical properties. When electron beam treatment was conducted on ZnO films, the optical band gap was increased and the carrier concentration and mobility were increased. In particular, a 0.5 mol% In-doped ZnO that received electron beam treatment at 2 keV exhibited an electrical resistivity as low as 4.8 × 10−2 Ω cm, while 57.1 Ω cm was obtained from the pristine ZnO thin film. When the ZnO films were applied to crystalline Si solar cells, conversion efficiency significantly increased from 10.37 % for the cell with pristine ZnO thin film to 11.45 % with the In-doped and electron beam-treated ZnO thin film.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim WM, Jeong JH, Park JK (2014) Curr Appl Phys 14:691–696

    Article  Google Scholar 

  2. Chen Z, Li W, Li R, Zhang Y, Xu G, Cheng H (2013) Langmuir 29:13836–13842

    Article  Google Scholar 

  3. Akkad FE, Paulose TAP (2014) Appl Surf Sci 295:8–17

    Article  Google Scholar 

  4. Tang ZK, Wong GKL, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1998) Appl Phys Lett 72:3270–3272

    Article  Google Scholar 

  5. Auret FD, Goodman SA, Legodi MJ, Meyer WE, Look DC (2002) Appl Phys Lett 80:1340–1342

    Article  Google Scholar 

  6. Zhang L, Li J, Zhang XW, Yu DB, LinKhizar-ul-Haq HP, Jiang XY, Zhang ZL (2010) Curr Appl Phys 10:1306–1308

    Article  Google Scholar 

  7. Yen KY, Chiu CH, Hsiao CY, Li CW, Chou CH, Lo KY, Chen TP, Lin CH, Lin TY, Gong JR (2014) J Cryst Growth 387:91–95

    Article  Google Scholar 

  8. Shi Q, Zhou K, Dai M, Lin S, Hou H, Wei C, Hu F (2013) Vacuum 94:81–83

    Article  Google Scholar 

  9. Zhou Y, Li D, Zhang X, Chen J, Zhang S (2012) Appl Surf Sci 261:759–763

    Article  Google Scholar 

  10. Kim JK, Yun SJ, Lee JM, Lim JW (2010) Curr Appl Phys 10:S451–S454

    Article  Google Scholar 

  11. Nam T, Lee CW, Kim HJ, Kim H (2014) Appl Surf Sci 295:260–265

    Article  Google Scholar 

  12. Anusha M, Arivuoli D (2013) J Alloy Compd 580:131–136

    Article  Google Scholar 

  13. Liu Y, Yang S, Wei G, Pan J, Yuan Y, Cheng C (2013) J Mater Sci Technol 29:1134–1138

    Article  Google Scholar 

  14. Rao TP, Santhoshkumar MC (2009) Appl Surf Sci 255:7212–7215

    Article  Google Scholar 

  15. Park C, Kim S, Lim S (2013) Solid State Commun 167:18–22

    Article  Google Scholar 

  16. Chatelon JP, Terrier C, Bernstein E, Berjoan R, Roger JA (1994) Thin Solid Films 247:162–168

    Article  Google Scholar 

  17. Malfatti L, Innocenzi P (2011) J Sol-Gel Sci Technol 60:226–235

    Article  Google Scholar 

  18. Caglar Y, Caglar M, Ilican S (2012) Curr Appl Phys 12:963–968

    Article  Google Scholar 

  19. Nayak PK, Yang J, Kim J, Chung S, Jeong J, Lee C, Hong Y (2009) J Phys D Appl Phys 42:035102

    Article  Google Scholar 

  20. Lee CH, Kim DW (2013) J Ceram Process Res 14:145–148

    Google Scholar 

  21. Gabás M, Landa-Cánovas A, Costa-Krämer JL, Agulló-Rueda F, González-Elipe AR, Díaz-Carrasco P, Hernández-Moro J, Lorite I, Herrero P, Castillero P, Barranco A, Ramos-Barrado JR (2013) J Appl Phys 113:163709

    Article  Google Scholar 

  22. Benouis CE, Sanchez-Juarez A, Aida MS (2007) J Appl Sci 7:220–225

    Article  Google Scholar 

  23. Girtan M, Socol M, Pattier B, Sylla M, Stanculescu A (2010) Thin Solid Films 519:573–577

    Article  Google Scholar 

  24. Thambidurai M, Kim JY, Kang CM, Muthukumarasamy N, Song HJ, Song J, Ko Y, Velauthapillai D, Lee C (2014) Renew Energy 66:433–442

    Article  Google Scholar 

  25. Prajapati CS, Sahay PP (2013) Mat Sci Semicond Proc 16:200–210

    Article  Google Scholar 

  26. Biswal R, Maldonado A, Vega-Pérez J, Acosta DR, Olvera MDLL (2014) Materials 7:5038–5046

    Article  Google Scholar 

  27. Hafdallah A, Yanineb F, Aida MS, Attaf N (2011) J Alloy Compd 509:7267–7270

    Article  Google Scholar 

  28. Illiberi A, Scherpenborg R, Roozeboom F, Poodt P (2014) ECS J Solid State Sci 3:P111–P114

    Article  Google Scholar 

  29. Ben-Yaacov T, Ive T, Van De Walle CG, Mishra UK, Speck JS, Denbaars SP (2010) J Electron Mater 39:608–611

    Article  Google Scholar 

  30. Djessas K, Bouchama I, Gauffier JL (2014) Ben Ayadi Z. Thin Solid Films 555:28–32

    Article  Google Scholar 

  31. Serin T, Yildiz A, Uzun S, Çam E, Serin N (2011) Phys Scr 84:065703

    Article  Google Scholar 

  32. Jun MC, Park SU, Koh JH (2012) Nanoscale Res Lett 7:639

    Article  Google Scholar 

  33. Lin JL, Lue JT, Yang MH, Hwang HL (1986) Appl Phys Lett 48:1057–1059

    Article  Google Scholar 

  34. Lin CY, Shih KH, Wu CC, Chin A (2002) J Electrochem Soc 149:G391–G393

    Article  Google Scholar 

  35. Tseng W, Dietrich H, Davey J, Christou A, Anderson WT (1980) J Electron Mater 9:685–692

    Article  Google Scholar 

  36. Sheu JK, Shu KW, Lee ML, Tun CJ, Chi GC (2007) J Electrochem Soc 154:H521–H524

    Article  Google Scholar 

  37. Chen TH, Cheng TC, Hu ZR (2013) Microsyst Technol 19:1787–1790

    Article  Google Scholar 

  38. Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solidi B 15:627–637

    Article  Google Scholar 

  39. Kim MS, Yim KG, Kim S, Nam G, Lee DY, Kim JS, Leem JY (2012) Acta Phys Pol A 121:217–220

    Google Scholar 

  40. Caglar M, Ilican S, Caglar Y (2009) Thin Solid Films 517:5023–5028

    Article  Google Scholar 

  41. Urbach F (1953) Phys Rev 92:1324

    Article  Google Scholar 

  42. O’Leary SK, Zukotynski S, Perz JM (1997) J Non-Cryst Solids 210:249–253

    Article  Google Scholar 

  43. Kim S, Kim C, Jeong C, Lim S (2014) Curr Appl Phys 14:862–867

    Article  Google Scholar 

  44. Huang HW, Kang CF, Lai FI, He JH, Lin SJ, Chueh YL (2013) Nanoscale Res Lett 8:483

    Article  Google Scholar 

  45. Kumar SS, Venkateswarlu P, Rao VR, Rao GN (2013) Inter Nano Lett 3:30

    Article  Google Scholar 

  46. Li C, Li XC, Yan PX, Chong EM, Liu Y, Yue GH, Fan XY (2007) Appl Surf Sci 253:4000–4005

    Article  Google Scholar 

  47. Cullity BD (1978) Elements of X-ray Diffraction. Addison-Wesley, Reading

  48. Caglar Y, Zor M, Caglar M, Ilican S (2006) J Optoelectron Adv Mater 8:1867–1873

    Google Scholar 

  49. Sanon G, Rup R, Mansingh A (1990) Thin Solid Films 190:287–301

    Article  Google Scholar 

  50. Duvenbeck A, Wucher A (2005) Phys Rev B 72:165408

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Priority Research Centers Program (2009-0093823) and the Basic Science Research Program (NRF-2013R1A1A2008788) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangwoo Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, C., Na, J. et al. Improvement in electrical properties of sol–gel-derived In-doped ZnO thin film by electron beam treatment. J Sol-Gel Sci Technol 74, 790–799 (2015). https://doi.org/10.1007/s10971-015-3664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3664-x

Keywords

Navigation