Skip to main content
Log in

A crystallization and structural study of the compound Pb2V2O7 synthesized by a facile sol–gel-based chemical route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, we carried out the synthesis of lead(II) divanadate(V) by means of a soft chemistry reaction based on a sol–gel-derived route. The final organic precursor was heat treated (T = 400, 500, 600, 750 and 800 °C) and structurally analyzed for each temperature by taking into account the results of FTIR spectroscopy, synchrotron X-ray powder diffraction and X-ray absorption near-edge structure. As an overall result, we report a final compound with remarkable crystallographic and morphological qualities that seem to keep all its structural features in the temperature range 450–700 °C before the structure incongruently melts. As a highlight, the desired material was obtained following a highly reproducible, low-cost, low-temperature and quite straightforward chemical route. Besides, this synthesis route could also allow the appropriate integration of lead(II) divanadate(V) nanoparticles, or nanolayers, into more complex systems as well as the feasibility for being expanded to other materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blonska-Tabero A, Bosacka M (2013) Comparative studies in subsolidus areas of ternary oxide systems PbO–V2O5–In2O3 and PbO–V2O5–Fe2O3. J Therm Anal Calorim 113(1):137–145. doi:10.1007/s10973-013-2996-4

    Article  Google Scholar 

  2. Bosacka M (2012) New indium lead(II) vanadate(V) in Pb2V2O7–InVO4 system and its characterization. J Alloy Compd 542:228–231. doi:10.1016/j.jallcom.2012.07.030

    Article  Google Scholar 

  3. Zhou W, Tan D, Xiao W, Song M, Chen M, Xiong X, Xu J (2012) Structural properties of PbVO3 perovskites under hydrostatic pressure conditions up to 10.6 GPa. J phys Condens matter Inst Phys J 24(43):435403. doi:10.1088/0953-8984/24/43/435403

    Article  Google Scholar 

  4. Martin LW, Zhan Q, Suzuki Y, Ramesh R, Chi M, Browning N, Mizoguchi T, Kreisel J (2007) Growth and structure of PbVO3 thin films. Appl Phys Lett 90(6):062903. doi:10.1063/1.2435944

    Article  Google Scholar 

  5. Blonska-Tabero A, Filipek E (2014) New solid solution Pb2−xSrxFeV3O11—Synthesis, homogeneity range and characterization. J Alloy Compd 587:148–152. doi:10.1016/j.jallcom.2013.10.144

    Article  Google Scholar 

  6. Guskos N, Typek J, Zolnierkiewicz G, Szymczak R, Berczynski P, Wardal K, Blonska-Tabero A (2011) Magnetic properties of a new iron lead vanadate Pb2FeV3O11. J Alloy Compd 509(32):8153–8157. doi:10.1016/j.jallcom.2011.05.114

    Article  Google Scholar 

  7. Errandonea D, Popescu C, Achary SN, Tyagi AK, Bettinelli M (2014) In situ high-pressure synchrotron X-ray diffraction study of the structural stability in NdVO4 and LaVO4. Mater Res Bull 50:279–284. doi:10.1016/j.materresbull.2013.10.047

    Article  Google Scholar 

  8. Goutaudier C, Ermeneux FS, Cohen-Adad MT, Moncorgé R, Bettinelli M, Cavalli E (1998) LHPG and flux growth of various Nd:YVO4 single crystals: a comparative characterization. Mater Res Bull 33(10):1457–1465. doi:10.1016/s0025-5408(98)00143-3

    Article  Google Scholar 

  9. Blonska-Tabero A (2010) Pb2Fe2V4O15—A new phase forming in the system FeVO4–Pb2V2O7. J Alloy Compd 508(1):42–46. doi:10.1016/j.jallcom.2010.08.028

    Article  Google Scholar 

  10. Blonska-Tabero A (2009) A new iron lead vanadate Pb2FeV3O11: synthesis and some properties. Mater Res Bull 44(8):1621–1625. doi:10.1016/j.materresbull.2009.04.015

    Article  Google Scholar 

  11. Liu H, Hu C, Wang ZL (2006) Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides. Nano Lett 6(7):1535–1540. doi:10.1021/nl061253e

    Article  Google Scholar 

  12. Suárez-Gómez A, Saniger-Blesa JM, Calderón-Piñar F (2012) ‘Universal’ Synthesis of PZT (1−x)/x Submicrometric structures using highly stable colloidal dispersions: a bottom-up approach. In: Peláiz-Barranco A (ed) Advances in Ferroelectrics. InTech. doi:10.5772/51996

  13. Suárez-Gómez A, Saniger-Blesa JM, Calderón-Piñar F (2010) A study on the stability of a PZT precursor solution based on the time evolution of mean particles size and pH. Mater Chem Phys 123(1):304–308. doi:10.1016/j.matchemphys.2010.04.017

    Article  Google Scholar 

  14. Tolentino HCN, Ramos AY, Alves MCM, Barrea RA, Tamura E, Cezar JC, Watanabe N (2001) A 2.3 to 25 keV XAS beamline at LNLS. J Synchrotron Radiat 8(3):1040–1046. doi:10.1107/s0909049501005143

    Article  Google Scholar 

  15. Suárez-Gómez A, Saniger-Blesa JM, Calderón-Piñar F (2011) A crystallization study of nanocrystalline PZT 53/47 granular arrays using a sol-gel based precursor. J Mater Sci Technol 27(6):489–496. doi:10.1016/s1005-0302(11)60096-0

    Article  Google Scholar 

  16. Zyryanov VV, Lapina OB (2001) Mechanochemical synthesis and structure of new phases in the Pb–V–O system. Inorg Mater 37(3):264–270. doi:10.1023/a:1004169431601

    Article  Google Scholar 

  17. Dimitrov V, Dimitriev Y (1990) Structure of glasses in PbO-V2O5 system. J Non-Cryst Solids 122(2):133–138. doi:10.1016/0022-3093(90)91058-y

    Article  Google Scholar 

  18. Fotiev AA, Slobodin BV, Khodos MY (1988) Vanadaty: sostav, sintez, struktura, svoistva (Vanadates: Composition, Synthesis, Structure, Properties). Nauka, Moskva

    Google Scholar 

  19. Kawahara A (1967) La structure cristalline de la chervetite. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie 90:279–284

    Google Scholar 

  20. Shannon RD, Calvo C (1973) Refinement of the crystal structure of synthetic chervetite, Pb2V2O7. Can J Chem 51(1):70–76. doi:10.1139/v73-010

    Article  Google Scholar 

  21. Martin K, McCarthy G (1993) ICDD Grant-in-Aid. Card 47-1735. ICDD, North Dakota State University, Fargo, USA

  22. Midorikawa M, Kashida H, Sawada A, Ishibashi Y (1980) Ferroelectricity in Pb3(VO4)2 crystal. J Phys Soc Jpn 49(3):1095–1097. doi:10.1143/jpsj.49.1095

    Article  Google Scholar 

  23. Salje E, Iishi K (1977) Ferroelastic phase transitions in lead phosphate–vanadate Pb3(PxV1−xO4)2. AcCrA 33(3):399–408. doi:10.1107/s0567739477001065

    Google Scholar 

  24. Baran EJ, Pedregosa JC, Aymonino PJ (1975) Das Schwingungsspektrum von Pb2V2O7. Monatsh Chem 106(5):1085–1090. doi:10.1007/bf00906220

    Article  Google Scholar 

  25. Weinstock N, Schulze H, Müller A (1973) Assignment of ν2 (E) and ν4 (F2) of tetrahedral species by the calculation of the relative Raman intensities: the vibrational spectra of VO4 3−, CrO4 2−, MoO4 2−, WO4 2−, MnO4 , TcO4 , ReO4 , RuO4, and OsO4. J Chem Phys 59(9):5063. doi:10.1063/1.1680724

    Article  Google Scholar 

  26. Baran EJ (1978) A correlation between the V—O—V bridge stretching frequencies and angle in divanadates. J Mol Struct 48(3):441–443. doi:10.1016/0022-2860(78)87254-8

    Article  Google Scholar 

  27. Wing RM, Callahan KP (1969) Characterization of metal-oxygen bridge systems. Inorg Chem 8(4):871–874. doi:10.1021/ic50074a034

    Article  Google Scholar 

  28. Brown RG, Ross SD (1972) The vibrational spectra of some condensed tetrahedral anions [X2O7]n−. Spectrochim Acta Part A 28(7):1263–1274. doi:10.1016/0584-8539(72)80096-5

    Article  Google Scholar 

  29. Hezel A, Ross SD (1967) The vibrational spectra of some divalent metal pyrophosphates. Spectrochim Acta Part A 23(5):1583–1589. doi:10.1016/0584-8539(67)80381-7

    Article  Google Scholar 

  30. Wong J, Messmer RP, Maylotte DH (1984) K-edge absorption spectra of selected vanadium compounds. Phys Rev B 30(10):5596–5610. doi:10.1103/PhysRevB.30.5596

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Project No. 221541/CUValles(DECyT)/P3e-2014, Project PROINPEP-2014/CUValles and Project PROMEP-NPTC No. UDG-PTC-1080. The authors would also like to thank to CNPEM, in particular to the LNNano and LNLS staff and, most of all, to Dr. C.A. Ospina Ramírez for his kind support with SEM characterizations. Besides, the help provided by Dr. C. Velásquez-Ordoñez, CUVALLES-UdG must also be acknowledged and highly appreciated. We also thank Dr. M. Saleta from Unicamp for help on XAFS acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Suárez-Gómez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez-Gómez, A., Figueroa, S.J.A., Lamas, D.G. et al. A crystallization and structural study of the compound Pb2V2O7 synthesized by a facile sol–gel-based chemical route. J Sol-Gel Sci Technol 75, 291–297 (2015). https://doi.org/10.1007/s10971-015-3698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3698-0

Keywords

Navigation