Skip to main content
Log in

Applications of inorganic–organic mesoporous materials constructed by self-assembly processes for removal of benzo[k]fluoranthene and benzo[b]fluoranthene

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The mesoporous materials MCM-41 and the functionalized inorganic–organic material p-aminobenzoic acid-MCM-41 (PABA-MCM-41) were used as adsorbents to remove the PAHs benzo[k]fluoranthene and benzo[b]fluoranthene from aqueous media. Both MCM-41 and PABA-MCM-41 exhibited the hexagonal mesostructures typical of the M41S family, as confirmed by SAXS, with type IV isotherms and type H1 hysteresis. The materials showed uniform mesopore size distributions, high surface areas, and thermal stability. Adsorption tests showed that for both mesoporous materials, the quantity adsorbed (q e) increased for higher initial PAH concentrations, and adsorption equilibrium was reached in around 90 min. The experimental kinetic data were fitted using the pseudo-second-order model, and the adsorption process could be described by the Langmuir isotherm. At higher temperatures, there were increases in the initial rates of adsorption and the kinetic constants for adsorption of the PAHs by PABA-MCM-41. The thermodynamic parameters indicated that the process was spontaneous, endothermic, and with a tendency toward disorder of the system at the adsorbent/adsorbate interface. The functionalization of MCM-41 increased the efficiency of adsorption of the PAHs by 44.5 and 32.0 % for benzo[k]fluoranthene and benzo[b]fluoranthene, respectively.

Graphical Abstract

Effect of contact time on adsorption of (a) B[k]F and (b) B[b]F by PABA-MCM-41. Conditions: 0.05 g of PABA-MCM-41, 5 mL of each PAH solution (concentration 200 µg L−1), temperature of 25 °C, contact time of 300 min, and agitation at 150 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cavalcante RM, Sousa FW, Nascimento RF, Silveira ER, Freire GSS (2009) The impact of urbanization on tropical mangroves (Fortaleza, Brazil): evidence from PAH distribution in sediments. J Environ Manage 91:328–335

    Article  Google Scholar 

  2. Liu Y, Chen L, Huang Q-H, Li W-Y, Tang Y-J, Zhao J-F (2009) Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Sci Total Environ 407:2931–2938

    Article  Google Scholar 

  3. Napier F, D’Arcy B, Jefferies C (2008) A review of vehicle related metals and polycyclic aromatic hydrocarbons in the UK environment. Desalination 226:143–150

    Article  Google Scholar 

  4. Zhang C, Wu L, Cai D, Zhang C, Wang N, Zhang J, Wu Z (2013) Adsorption of polycyclic aromatic hydrocarbons (fluoranthene and anthracenemethanol) by functional graphene oxide and removal by pH and temperature-sensitive coagulation. ACS Appl Mater Interfaces 5:4783–4790

    Article  Google Scholar 

  5. Huang WW, Wang W, Yan W (2012) Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments from Zhanjiang Bay and Leizhou Bay, South China. Mar Pollut Bull 64:1962–1969

    Article  Google Scholar 

  6. Barakat AO, Mostafa A, Wade TL, Sweet ST, El Sayed NB (2011) Distribution and characteristics of PAHs in sediments from the Mediterranean coastal environment of Egypt. Mar Pollut Bull 62:1969–1978

    Article  Google Scholar 

  7. Xu J, Du J, Jing C, Zhang Y, Cui J (2014) Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the Au coffee ring effect. ACS Appl Mater Interfaces 6:6891–6897

    Article  Google Scholar 

  8. Jajoo A, Mekala NR, Tomar RS, Grieco M, Tikkanen M, Aro E-M (2014) Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity. J Photochem Photobiol B: Biol 137:151–155

    Article  Google Scholar 

  9. Kose T, Yamamoto T, Anegawa A, Mohri S, Ono Y (2008) Source analysis for polycyclic aromatic hydrocarbon in road dust and urban runoff using marker compounds. Desalination 226:151–159

    Article  Google Scholar 

  10. Essumang DK, Dodoo DK, Adjei JK (2014) Effective reduction of PAH contamination in smoke cured fish products using charcoal filters in a modified traditional kiln. Food Control 35:85–93

    Article  Google Scholar 

  11. Wang C, Wang X, Gong P, Yao T (2014) Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: spatial distribution, source and air-soil exchange. Environ Pollut 184:138–144

    Article  Google Scholar 

  12. US Environmental Protection Agency (US EPA) (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons EPA/600/R-93/089

  13. International Agency for Research on Cancer (IARC) (2006) Monographs on the evaluation of carcinogenic risk of chemicals to humans. Polycyclic aromatic hydrocarbons. http://monographs.iarc.fr/ENG/Meetings/92-pahs.pdf

  14. Leis Brasil, Conselho Nacional do Meio Ambiente (2005) Resolução Conama Nº 357, de 17 de março, DOU 18.03.2005

  15. Leis Brasil, Ministério da Saúde (2011) Portaria MS No 2914 de 12/12/2011, D.O.:14/12/2011

  16. Pinedo J, Ibáñez R, Lijzen JPA, Irabien Á (2013) Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances. J Environ Manage 130:72–79

    Article  Google Scholar 

  17. Nkansaha MA, Christy AA, Barth T, Francis GW (2012) The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water. J Hazard Mater 217–218:360–365

    Article  Google Scholar 

  18. Lee JJ, Huang K-L, Yu YY, Chen MS (2004) Laboratory retention of vapor-phase PAHs using XAD adsorbents. Atmos Environ 38:6185–6193

    Article  Google Scholar 

  19. Araújo RS, Azevedo DCS, Cavalcante CL Jr, Jiménez-López A, Rodríguez-Castellón E (2008) Adsorption of polycyclic aromatic hydrocarbons (PAHs) from isooctane solutions by mesoporous molecular sieves: influence of the surface acidity. Microporous Mesoporous Mater 108:213–222

    Article  Google Scholar 

  20. Gong Z, Alef K, Wilke B-M, Li P (2007) Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. J Hazard Mater 143:372–378

    Article  Google Scholar 

  21. Zeledón-Toruño ZC, Lao-Luque C, Heras FXC, Sole-Sardans M (2007) Removal of PAHs from water using an immature coal (leonardite). Chemosphere 67:505–512

    Article  Google Scholar 

  22. Vidal CB, Barros AL, Moura CP, Lima ACA, Dias FS, Vasconcellos LCG, Fechine PBA, Nascimento RF (2011) Adsorption of polycyclic aromatic hydrocarbons from aqueous solutions by modified periodic mesoporous organosilica. J Colloid Interface Sci 357:466–473

    Article  Google Scholar 

  23. Ricco R, Malfatti L, Takahashi M, Hill AJ, Falcaro P (2013) Applications of magnetic metal–organic framework composites. J Mater Chem A 1:13033–13045

    Article  Google Scholar 

  24. Kresge CT, Leonowicz ME, Roth WJ, Vartulli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  Google Scholar 

  25. Beck JS, Schmitt KD, Higgins JB, Schlenkert JL (1992) New family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 14:10834–10843

    Article  Google Scholar 

  26. Rámila A, Muñoz B, Pérez-Pariente J, Vallet-Regí M (2003) Mesoporous MCM-41 as drug host system. J Sol-Gel Sci Technol 26:1199–1202

    Article  Google Scholar 

  27. Pal P, Rastogi SK, Gibson CM, Aston DE, Branen AL, Bitterwolf TE (2011) Fluorescence sensing of zinc(II) using ordered mesoporous silica material (MCM-41) functionalized with N-(Quinolin-8-yl)-2-[3-(triethoxysilyl)propylamino]acetamide. ACS Appl Mater Interfaces 3:279–286

    Article  Google Scholar 

  28. Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Microporous Mesoporous Mater 125:170–223

    Article  Google Scholar 

  29. Melo RAA, Giotto MV, Rocha J, Urquieta-González EA (1999) MCM-41 ordered mesoporous molecular sieves synthesis and characterization. Mater Res 2:173–179

    Article  Google Scholar 

  30. Taralkar US, Niphadkar PS, Joshi PN (2009) Synthesis of Si–MCM-41 from ternary SiO2–CTAOH–H2O system via dry gel conversion route. J Sol-Gel Sci Technol 51:244–250

    Article  Google Scholar 

  31. Carniato F, Secco A, Gatti G, Marchese L, Sappa E (2009) Reaction of the novel Ru3(CO)10[Ph2P(CH2)2Si(OEt3)]2 complex on SBA-15 and MCM-41 mesoporous silicas. J Sol-Gel Sci Technol 52:235–241

    Article  Google Scholar 

  32. Maheshwari S, Martínez C, Portilla MT, Llopis FJ, Corma A, Tsapatsis M (2010) Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36. J Catal 272:298–308

    Article  Google Scholar 

  33. Wu H-Y, Zhang X-L, Yang C-Y, Chen X, Zheng X-C (2013) Alkali-hydrothermal synthesis and characterization of W–MCM-41 mesoporous materials with various Si/W molar ratios. Appl Surf Sci 270:590–595

    Article  Google Scholar 

  34. Lan B, Huang R, Li L, Yan H, Liao G, Wang X, Zhang Q (2013) Catalytic ozonation of p-chlorobenzoic acid in aqueous solution using Fe–MCM-41 as catalyst. Chem Eng J 219:346–354

    Article  Google Scholar 

  35. Shao Y-F, Yan B (2014) Multi-component hybrids of surfactant functionalized europium tetrakis (β-diketonate) in MCM-41(m) and polymer modified ZnO for luminescence integration. Microporous Mesoporous Mater 193:85–92

    Article  Google Scholar 

  36. Li HR, Lin J, Fu LS, Guo JF, Meng QG, Liu FY, Zhang HJ (2002) Phenanthroline-functionalized MCM-41 doped with Europium ions. Microporous Mesoporous Mater 55:103–107

    Article  Google Scholar 

  37. Anbia M, Mohammadi N, Mohammadi K (2010) Fast and efficient mesoporous adsorbents for the separation of toxic compounds from aqueous media. J Hazard Mater 176:965–972

    Article  Google Scholar 

  38. Cao Q-Y, Chen Y-H, Liu J-H, Gao X-C (2009) Novel luminescent europium(III) complexes covalently bonded to bis(phosphino)amine oxide functionalized MCM-41. Inorg Chem Commun 12:48–51

    Article  Google Scholar 

  39. Costa JAS, Garcia ACFS, Santos DO, Sarmento VHV, Porto ALM, Mesquita ME, Romão LPC (2014) A new functionalized MCM-41 mesoporous material for use in environmental applications. J Braz Chem Soc 25:197–207

    Google Scholar 

  40. Tanev PT, Pinnavaia TJ (1996) Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties. Chem Mater 8:2068–2079

    Article  Google Scholar 

  41. Chatterjee M, Hayashi H, Saito N (2003) Role and effect of supercritical fluid extraction of template on the Ti(IV) active sites of Ti–MCM-41. Microporous Mesoporous Mater 57:143–155

    Article  Google Scholar 

  42. Cai C, Wang H, Han J (2011) Synthesis and characterization of ionic liquid-functionalized alumino-silicate MCM-41 hybrid mesoporous materials. Appl Surf Sci 257:9802–9808

    Article  Google Scholar 

  43. Rana S, Mallick S, Mohapatra L, Varadwaj GBB, Parida KM (2012) A facile method for synthesis of Keggin-type cesium salt of iron substituted lacunary phosphotungstate supported on MCM-41 and study of its extraordinary catalytic activity. Catal Today 198:52–58

    Article  Google Scholar 

  44. Oliveira AC, Rangel MC, Fierro JLG, Reyes P, Oportus M (2005) Efeito do cromo nas propriedades catalíticas da MCM-41. Quím Nova 28:37–41

    Article  Google Scholar 

  45. Braga RM, Barros JMF, Melo DMA, Melo MAF, Aquino FM, Freitas JCO, Santiago RC (2012) Kinetic study of template removal of MCM-41 derived from rice husk ash. J Therm Anal Calorim 111:1013–1018

    Article  Google Scholar 

  46. Wang H, Ma Y, Tian H, Tang N, Liu W, Wang Q, Tang Y (2010) Novel europium complexes covalently bonded to MCM-41 and SBA-15: spatial confinement effects on photoluminescence behavior. Dalton Trans 39:7485–7492

    Article  Google Scholar 

  47. Freitas FG, Sarmento VHV, Santilli CV, Pulcinelli SH (2010) Controlling the growth of zirconia needles precursor from a liquid crystal template. Colloids Surf A 353:77–82

    Article  Google Scholar 

  48. Aiello D, Mirabelli I, Testa F (2012) Adsorption of 2-methylbenzoic acid onto MCM-41 mesoporous material: kinetics and equilibrium studies. J Sol-Gel Sci Technol 64:1–8

    Article  Google Scholar 

  49. Lai S-W, Lin H-L, Yu TL, Lee L-P, Weng B-J (2012) Hydrogen release from ammonia borane embedded in mesoporous silica scaffolds: SBA-15 and MCM-41. Int J Hydrogen Energy 37:14393–14404

    Article  Google Scholar 

  50. Marin-Astorga N, Martinez JJ, Borda G, Cubillos J, Suarez DN, Rojas H (2012) Control of the chemoselectivity in the oxidation of geraniol over lanthanum, titanium and niobium catalysts supported on mesoporous silica MCM-41. Top Catal 55:620–624

    Article  Google Scholar 

  51. Yu H, Xue X, Huang D (2009) Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings. Mater Res Bull 44:2112–2115

    Article  Google Scholar 

  52. Qiao X, Yan B (2008) Assembly, characterization, and photoluminescence of hybrids containing europium(III) complexes covalently bonded to inorganic Si–O networks/organic polymers by modified β-diketone. J Phys Chem B 112:14742–14750

    Article  Google Scholar 

  53. Khattri SD, Singh MK (2000) Colour removal from synthetic dye wastewater using a bioadsorbent. Water Air Soil Pollut 120:283–294

    Article  Google Scholar 

  54. Netpradit S, Thiravetyan P, Towprayoon S (2004) Adsorption of three azo reactive dyes by metal hydroxide sludge: effect of temperature, pH, and electrolytes. J Colloid Interface Sci 270:255–261

    Article  Google Scholar 

  55. Özcan AS, Özcan A (2004) Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. J Colloid Interface Sci 276:39–46

    Article  Google Scholar 

  56. Eren E, Cubuk O, Ciftci H, Eren B, Caglar B (2010) Adsorption of basic dye from aqueous solutions by modified sepiolite: equilibrium, kinetics and thermodynamics study. Desalination 252:88–96

    Article  Google Scholar 

  57. Tang H, Zhou W, Zhang L (2012) Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J Hazard Mater 209–210:218–225

    Article  Google Scholar 

  58. Santos DO, Santos MLN, Costa JAS, Jesus RA, Navickiene S, Sussuchi EM, Mesquita ME (2013) Investigating the potential of functionalized MCM-41 on adsorption of Remazol Red dye. Environ Sci Pollut Res 20:5028–5035

    Article  Google Scholar 

  59. Gil A, Assis FCC, Albeniz S, Korili SA (2011) Removal of dyes from wastewaters by adsorption on pillared clays. Chem Eng J 168:1032–1040

    Article  Google Scholar 

  60. Parida KM, Mishra KG, Dash SK (2012) Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies. J Hazard Mater 241–242:395–403

    Article  Google Scholar 

  61. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Biochem Res 34:451–465

    Google Scholar 

  62. Özacar M, Sengil IA (2004) Application of kinetic models to the disperse dyes onto alunite. Colloid Surf Physicochem Eng Asp 242:105–113

    Article  Google Scholar 

  63. Dou B, Hu Q, Li J, Qiao S, Hao Z (2011) Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. J Hazard Mater 186:1615–1624

    Article  Google Scholar 

  64. Mangrulkar PA, Kamble SP, Meshram J, Rayalu SS (2008) Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. J Hazard Mater 160:414–421

    Article  Google Scholar 

  65. Romero-Gonzalez J, Peralta-Videa JR, Rodrıguez E, Ramirez SL, Gardea-Torresdey JL (2005) Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J Chem Thermodyn 37:343–347

    Article  Google Scholar 

  66. Parida KM, Dash SK (2010) Adsorption of Cu2+ on spherical Fe-MCM-41 and its application for oxidation of adamantine. J Hazard Mater 179:642–649

    Article  Google Scholar 

  67. Eftekhari S, Habibi-Yangjeh A, Sohrabnezhad S (2010) Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: thermodynamic and kinetic studies. J Hazard Mater 178:349–355

    Article  Google Scholar 

  68. Liu Y, Liu Z, Gao J, Dai J, Han J, Wang Y, Xie J, Yan Y (2011) Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique. J Hazard Mater 186:197–205

    Article  Google Scholar 

  69. Tümsek F, Inel O (2003) Evaluation of the thermodynamic parameters for the adsorption of some n-alkanes on A type zeolite crystals by inverse gas chromatography. Chem Eng J 94:57–66

    Article  Google Scholar 

  70. Costa AA, Wilson WB, Wang H, Campiglia AD, Dias JA, Dias SCL (2012) Comparison of BEA, USY and ZSM-5 for the quantitative extraction of polycyclic aromatic hydrocarbons from water samples. Microporous Mesoporous Mater 149:186

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for research Grants (Processes 309342/2010-4 and 135602/2011-4) and LNLS for the SAXS measurements (Project SAXS1 12642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane P. C. Romão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, J.A.S., Garcia, A.C.F.S., Santos, D.O. et al. Applications of inorganic–organic mesoporous materials constructed by self-assembly processes for removal of benzo[k]fluoranthene and benzo[b]fluoranthene. J Sol-Gel Sci Technol 75, 495–507 (2015). https://doi.org/10.1007/s10971-015-3720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3720-6

Keywords

Navigation