Skip to main content
Log in

Microstructure and transport properties of biocompatible silica hydrogels

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica matrices are suitable for encapsulation of biomolecules and microorganisms to build bioactive functional materials. For many applications of these host–guest systems, the performance highly depends on the tuning of transport properties. Here we analyze the microstructure of silica hydrogels from small-angle X-ray scattering (SAXS) experiments and its correlation with their transport properties evaluated from the fitting of diffusional profiles of the cationic dye crystal violet (CV). We found a clear correlation between the microstructure parameters and the transport of CV over a wide range of synthesis conditions (SiO2 total content from 3.6 to 9.0 % and pH of silica condensation from 4.5 to 7.5). At pH ~ 6, non-monotonic changes in transport properties can be attributed to the discontinuity observed in microscopic parameters, revealing the inherent complexity of the sol–gel transition. However, regardless of the pH of synthesis and for each set of samples with a fixed silica concentration, CV apparent diffusion coefficient (D app) is inversely proportional to the parameter S (related to the silica/aqueous-solution interfacial area) derived from SAXS. These results indicate that macroscopic properties cannot be easily predicted from the pH of synthesis, in particular around neutral pH that is relevant for biotechnological applications. Nonetheless, the close correlation between D app and the microstructure parameters of the studied systems allows proposing a predictive value of any of these approaches toward the other.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avnir D, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16(11):1013–1030

    Article  Google Scholar 

  2. Livage J, Coradin T (2006) Living cells in oxide glasses. Rev Miner Geochem 64(1):315–332

    Article  Google Scholar 

  3. Meunier CF, Dandoy P, Su B-L (2010) Encapsulation of cells within silica matrixes: towards a new advance in the conception of living hybrid materials. J Colloid Interface Sci 342:211

    Article  Google Scholar 

  4. Perullini M, Orias F, Durrieu C, Jobbágy M, Bilmes SA (2014) Co-encapsulation of Daphnia magna and microalgae in silica matrices, a stepping stone toward a portable microcosm. Biotechnol Rep 4:147–150

    Article  Google Scholar 

  5. Pannier A, Soltmann U, Soltmann B, Altenburger R, Schmitt-Jansen M (2014) Alginate/silica hybrid materials for immobilization of green microalgae Chlorella vulgaris for cell-based sensor arrays. J Mater Chem B 2:7896–7909

    Article  Google Scholar 

  6. Ge X, Eleftheriou NM, Dahoumane SiA, Brennan JD (2013) Sol–gel-derived materials for production of pin-printed reporter gene living-cell microarrays. Anal Chem 85:12108–12117

    Article  Google Scholar 

  7. Brayner R, Couté A, Livage J, Perrette C, Sicard C (2013) Micro-algal biosensors. Anal Bioanal Chem 401(2):581–597

    Article  Google Scholar 

  8. Perullini M, Ferro Y, Durrieu C, Jobbagy M, Bilmes SA (2014) Sol gel silica platforms for microalgae-based optical biosensors. J Biotechnol 179(1):65–70

    Article  Google Scholar 

  9. Perullini M, Rivero MM, Jobbagy M, Mentaberry A, Blimes SA (2007) Plant cell proliferation inside an inorganic host. J Biotechnol 127(3):542–548

    Article  Google Scholar 

  10. Nassif N, Roux C, Coradin T, Bouvet OMM, Livage J (2004) Bacteria quorum sensing in silica matrices. J Mater Chem 14(14):2264–2268

    Article  Google Scholar 

  11. Fiedler D, Hager U, Franke H, Soltmann U, Böttcher H (2007) Algae biocers: astaxanthin formation in sol–gel immobilised living microalgae. J Mater Chem 17(3):261–266

    Article  Google Scholar 

  12. Soler-Illia GJAA, Innocenzi P (2006) Mesoporous hybrid thin films: the physics and chemistry beneath. Chem Eur J 12:4478–4494

    Article  Google Scholar 

  13. Otal EH, Angelomé PC, Bilmes SA, Soler-Illia GJAA (2006) Functionalised mesoporous hybrid thin films as selective membranes. Adv Mater 18:934–938

    Article  Google Scholar 

  14. Collard X, Van der Schueren B, Rooke J, Aprile C, Su B (2013) A comprehensive study of the reaction parameters involved in the synthesis of Silica thin films with well-ordered uni-directional mesopores. J Colloid Interface Sci 401:23–33

    Article  Google Scholar 

  15. Perullini M, Jobbágy M, Moretti MB, Correa García S, Bilmes SA (2008) Optimizing silica encapsulation of living cells. In situ evaluation of cellular stress. Chem Mater 20:3015–3021

    Article  Google Scholar 

  16. Kuncova G, Podrazky O, Ripp S, Trögl J, Sayler GS, Demnerova K, Vankova R (2004) Monitoring of the viability of cells immobilized by sol–gel process. J Sol-Gel Sci Technol 31:1–8

    Article  Google Scholar 

  17. Perchacz M, Benes H, Kobera L, Walterova Z (2015) Influence of sol–gel conditions on the final structure of silica-based precursors. J Sol-Gel Sci Technol 75:649–663

    Article  Google Scholar 

  18. Reichenauer G (2004) Thermal aging of silica gels in water. J Non-Cryst Solids 350:189–195

    Article  Google Scholar 

  19. Coiffier A, Coradin T, Roux C, Bouvet OM, Livage J (2001) Sol–gel encapsulation of bacteria: a comparison between alkoxide and aqueous routes. J Mater Chem 11:2039–2044

    Article  Google Scholar 

  20. Ferrer ML, Del Monte F, Levy D (2002) A novel and simple alcohol-free sol-gel route for encapsulation of labile proteins. Chem Mater 14:3619–3621

    Article  Google Scholar 

  21. Ferrer ML, Yuste L, Rojo F, Del Monte F (2003) Biocompatible sol–gel route for encapsulation of living bacteria in organically modified silica matrixes. Chem Mater 15:3614–3618

    Article  Google Scholar 

  22. Himmel B, Gerberb Th, Bürger H (1990) WAXS- and SAXS-investigations of structure formation in alcoholic SiO2 solutions. J Non-Cryst Solids 119:1–13

    Article  Google Scholar 

  23. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  24. Perullini M, Jobbagy M, Bilmes SA, Torriani IL, Candal R (2011) Effect of synthesis conditions on the microstructure of TEOS derived silica hydrogels synthesized by the alcohol-free sol–gel route. J Sol-Gel Sci Technol 59(1):174–180

    Article  Google Scholar 

  25. Tantemsapya N, Meegoda JN (2004) Estimation of diffusion coefficient of chromium in colloidal silica using digital photography. Environ Sci Technol 38:3950–3957

    Article  Google Scholar 

  26. Ray E, Bunton P, Pojman JA (2007) Determination of the diffusion coefficient between corn syrup and distilled water using a digital camera. Am J Phys 75:903–906

    Article  Google Scholar 

  27. Perullini M, Jobbágy M, Japas ML, Bilmes SA (2014) Simultaneous determination of diffusion and adsorption of dyes in silica hydrogels. J Colloid Interface Sci 425:91–95

    Article  Google Scholar 

  28. Schmidt PW, Höhr A, Neumann H-B, Kaiser H, Avnir D, Lin JS (1989) Small angle X-ray scattering study of the fractal morphology of porous silicas. J Chem Phys 90(9):5016–5023

    Article  Google Scholar 

  29. http://rsb.info.nih.gov/ij/download.html

  30. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  31. Cavalcanti LP, Torriani IL, Plivelic TS, Oliveira CLP, Kellermann G, Neuenschwander R (2004) Rev Sci Instrum 75:4541

    Article  Google Scholar 

  32. Schaefer DW, Keefer KD (1984) Fractal geometry of sílica condensation polymers. Phys Rev Lett 53(14):1383–1386

    Article  Google Scholar 

  33. Avnir D, Biham O, Lidar D, Malcai O (1998) Is the geometry of nature fractal? Science 279:39–40

    Article  Google Scholar 

  34. Sorensen CM, Wang GM (1999) Size distribution effect on the power law regime of the structure factor of fractal aggregates. Phys Rev E 60(6):7143–7148

    Article  Google Scholar 

  35. Vinogradova E, Moreno A, Lara VH, Bosch P (2003) Multi-fractal imaging and structural investigation of silica hydrogels and aerogels. Silicon Chem 2:247–254

    Article  Google Scholar 

  36. Ruthven DM (2004) Sorption kinetics for diffusion-controlled systems with a strongly concentration-dependent diffusivity. Chem Eng Sci 59:4531–4545

    Article  Google Scholar 

  37. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  38. Alexander F, Poots VJP, McKay G (1978) Adsorption kinetics and diffusional mass transfer processes during colour removal from effluents using silica. Ing Eng Chem Process Des Dev 17(4):406–410

    Article  Google Scholar 

  39. Perullini M, Calcabrini M, Jobbágy M, Bilmes SA (2015) Alginate/porous silica matrices for the encapsulation of living organisms: tunable properties for biosensors, modular bioreactors, and bioremediation devices. Mesoporous Biomater 2:3–12

    Article  Google Scholar 

  40. Perullini M, Amoura M, Roux C, Coradin T, Livage J, Japas ML, Jobbagy M, Bilmes SA (2011) Improving silica matrices for encapsulation of Escherichia coli using osmoprotectors. J Mater Chem 21:4546

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Brazilian Synchrotron Light Laboratory (LNLS, Brazil, Proposal D11A-SAXS-6039), the University of Buenos Aires (UBACyT 20020130100048BA), and by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT PICT 2013-2045 and 2012-1167). S.A.B., M.J. and M.P. are Research Scientists of CONICET (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Perullini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 562 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perullini, M., Levinson, N., Jobbágy, M. et al. Microstructure and transport properties of biocompatible silica hydrogels. J Sol-Gel Sci Technol 77, 437–445 (2016). https://doi.org/10.1007/s10971-015-3872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3872-4

Keywords

Navigation