Skip to main content
Log in

Hybrid silicas/waterborne polyurethane composite properties: In situ formation vs. grafting methods

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of composites of commercial waterborne polyurethane and hybrid silica were prepared by the sol–gel process through in situ synthesis. Mechanical properties, small angle X-ray scattering and differential scanning calorimetry measurements were performed to evaluate the effects that hybrid silica has on the properties of the resulting polyurethane composites. A series of 13 different organosilanes differing in polarity and alkyl chain length was studied. Under the present evaluated conditions, composites bearing hybrid silica were more likely to exhibit a reduction in mechanical resistance when compared to bare polyurethane. Samples also exhibited a negligible variation in glass transition temperature and a reduction in ΔCp. The enthalpy of the crystallization process exhibited an increase. Based on the small angle X-ray scattering measurements, the composites exhibited a small reduction in the interdomain spacing and an increase in the degree of phase separation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Szycher M (2012) Szycher’s handbook of polyurethanes. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Van Bogart JWC, Gibson PE, Cooper SL (1983) J Polym Sci Polym Phys Ed 21:65–95

    Article  Google Scholar 

  3. Prisacariu C (2011) Polyurethane elastomers from morphology to mechanical aspects. Springer, Vien

    Book  Google Scholar 

  4. Koberstein JT, Stein RS (1983) J Polym Sci Polym Phys Ed 21:1439–1472

    Article  Google Scholar 

  5. Leung LM, Koberstein JT (1985) Polym Sci Polym Phys Ed 23:1883–1913

    Article  Google Scholar 

  6. Cakic SM, Ristic IS, Marinovic-Cincovic M, Spırkova M (2013) Int J Adhes Adhes 41:132–139

    Article  Google Scholar 

  7. Vega-Baudrit J, Navarrobanon V, Vazquez P, Martin-martinez J (2006) Int J Adhes Adhes 26:378–387

    Article  Google Scholar 

  8. Torró-Palau AM, Fernández-Garcia JC, Orgilés-Barceló AC, Martı́n-Martı́nez JM (2001) Int J Adhes Adhes 21:1–9

    Article  Google Scholar 

  9. Baudrit J, Sibaja-Ballestero M, Vázquez P, Torregrosa-Maciá R, Martín-Martínez Miguel J (2007) Int J Adhes Adhes 27:469–479

    Article  Google Scholar 

  10. Jang ES, Khan SB, Seo J, Akhtar K, Choi J, Kim KI et al. (2011) Macromol Res 19:1006–1013

    Article  Google Scholar 

  11. Lin WC, Yang CH, Wang TL, Shieh YT, Chen WJ (2012) Express Polym Lett 6:2–13

    Article  Google Scholar 

  12. Lai X, Shen Y, Wang L, Li Z (2011) Polym-Plast Technol Eng 50:740–747

    Article  Google Scholar 

  13. Wang L, Shen Y, Lai X, Li Z (2011) Appl Polym Sci 119:3521–3530

    Article  Google Scholar 

  14. Wu D, Qiu F, Xu H, Zhang J, Yang D (2011) J Appl Polym Sci 119:1683–1695

    Article  Google Scholar 

  15. Wu D, Xu H, Qiu F, Yang D (2011) Polym Plast Technol Eng 50:498–508

    Article  Google Scholar 

  16. Jena KK, Sahoo S, Narayan R, Aminabhavi TM, Raju K (2011) Polym Int 60:1504–1513

    Article  Google Scholar 

  17. Jeon HT, Jang MK, Kim BK, Kim KH (2007) Colloids Surf A 302:559–567

    Article  Google Scholar 

  18. Florian P, Jena KK, Allauddin S, Narayan R, Raju KVSN (2010) Ind Eng Chem Res 49:4517–4527

    Article  Google Scholar 

  19. Watanabe L, Shirai H, Fuji T, Takahashi MM (2012) J Appl Polym Sci 126:E522–E529

    Article  Google Scholar 

  20. Jung DH, Jeong MA, Jeong HM, Kim BK (2010) Colloid Polym Sci 288:1465–1470

    Article  Google Scholar 

  21. Jung DH, Jeong HM, Kim BK (2010) Mater Chem 20:3458–4366

    Article  Google Scholar 

  22. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  23. Lee SK, Yoon SH, Chung I, Hartwig A, Kim BK (2011) J Polym Sci Part A: Polym Chem 49:634–641

    Article  Google Scholar 

  24. Mishra AK, Narayan R, Aminabhavi TM, Pradhan SK, Raju KVSN (2012) J Appl Polym Sci 125:E67–E75

    Article  Google Scholar 

  25. Hosgor Z, Karatas S, Gungor A, Menceloglu Y (2012) Adv Polym Technol 31:390–400

    Article  Google Scholar 

  26. Athawale VD, Kulkarni MA (2011) Pigment Resin Technol 40:49–57

    Article  Google Scholar 

  27. Kang SM, Kim MJ, Kwon SH, Park H, Jeong HM, Kim BK (2012) J Mater Res 27:2837–2843

    Article  Google Scholar 

  28. Heck CA, Giacomolli DA, Livotto PR, dos Santos JHZ, Wolf CR (2014) J Appl Polym Sci 131:41157

    Article  Google Scholar 

  29. Heck CA, dos Santos JHZ, Wolf CR (2015) Int J Adhes Adhes 58:13–20

    Article  Google Scholar 

  30. Saiani A, Daunch WA, Verbeke H, Leenslag J, Higgins JS (2001) Macromolecules 34:9059–9068

    Article  Google Scholar 

  31. Callister Jr WD, Rethwisch DG (2009) Materials science and engineering: an introduction. Wiley, New York

    Google Scholar 

  32. Nunes RCR, Fonseca JLC, Pereira MR (2000) Polym Test 19:93–103

    Article  Google Scholar 

  33. Nunes RCR, Pereira RA, Fonseca JLC, Pereira MR (2001) Polym Test 20:707–712

    Article  Google Scholar 

  34. Bistricic L, Baranovic G, Leskovac M, Bajsic EG (2010) Eur Polym J 46:1975–1987

    Article  Google Scholar 

  35. Samuels SL, Wilkes GL (1973) J Polym Sci B 11:807–811

    Google Scholar 

  36. Saiani A, Novak A, Rodier L, Eeckhaut G, Leenslag J-W, Higgins JS (2007) Macromol 40:7252–7262

    Article  Google Scholar 

Download references

Acknowledgments

Heck thanks CNPq for the grant. The authors thank the LNLS (Project SAXS1-11797) for the measurements on the SAXS beamline (Project SAXS1-11797).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henrique Z. dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heck, C.A., dos Santos, J.H.Z. & Wolf, C.R. Hybrid silicas/waterborne polyurethane composite properties: In situ formation vs. grafting methods. J Sol-Gel Sci Technol 81, 505–513 (2017). https://doi.org/10.1007/s10971-016-4220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4220-z

Keywords

Navigation