Skip to main content
Log in

Loading insoluble sulfides in mesoporous oxide films from precursors in solution

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

E-waste from the electric and electronics industry is an emerging threat due to the pollution caused by hazardous cations. Immobilization and confinement of these cations as nanoparticles (NPs) in porous materials provide a strategy for the recovery and recycling of hazardous cations. Therefore, we propose the use of mesoporous oxides (MPO) films where the pores act as nanoreactors for the precipitation of metal sulfides (MS) to achieve a process in which dissolved cations are removed and at the same time form a nanostructure to serve as a basis for future designs. In this work, we present a detailed study of the formation of metal sulfides (MS - M = Cd, Zn, Co, Ni) NPs controlling the NP growth in the pores of the MPO by a successive ionic layer adsorption and reaction (SILAR) process. By varying diverse variables of interest such as pH, matrix composition (SiO2, TiO2, ZrO2), isoelectric point (IP) of the inorganic pore surface by organic functionalizers, we show that precipitation is comparable for the different metal sulfides where transport in the mesoporosity and the electrical charge of the surface, as well as the solvent, control the physicochemical response of the system. Understanding the role of each variable allows the limitations of loading MPOs to be identified and the pore filling to be optimized, although ion transport limitations in aqueous solutions lead to inhomogeneous distributions. Through a thorough characterization study (SEM, TEM, UVVIS, EEP, XRR, XPS), it was concluded that MPO thin films are useful platforms for the efficient removal of cations dissolved in water and even in alcohols.

Graphical Abstract

Highlights

  • Diverse metal sulfides nanoparticles were confined in the pores of mesoporous thin films.

  • Successive ionic layer adsorption and reaction (SILAR) gives precipitation in mesopores.

  • Progressive pore filling and composite structure were exhaustively characterized by complementary techniques.

  • Pore oxide surface, functionalization and geometry affect filling, clogging, and particle formation.

  • Heterogeneous nucleation is controlled by the cation interaction with the oxide surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shittu OS, Williams ID, & Shaw PJ (2020) Global E-waste management: Can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Management

  2. Onna D, Fuentes KM, Spedalieri C, Perullini M, Marchi MC, Alvarez F, Candal RJ, & Bilmes, SA (2018) Wettability photoactivity and antimicrobial activity of glazed ceramic tiles coated with titania films containing tungsten. ACS Omega 3:17629–17636

  3. Fuentes KM, Onna D, Rioual T, Huvelle MAL, Britto F, Simian M, Sánchez-Domínguez M, Soler-Illia GJAA, Bilmes SA (2021) Copper upcycling by hierarchical porous silica spheres functionalized with branched polyethylenimine: antimicrobial and catalytic applications. Microporous Mesoporous Mater 327:111391

    Article  CAS  Google Scholar 

  4. Pu Y, Cai F, Wang D, Wang JX, Chen JF (2018) Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind Eng Chem Res 57(6):1790–1802

    Article  CAS  Google Scholar 

  5. Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102(11):4093–4138

    Article  CAS  Google Scholar 

  6. Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41(14):4909–4927

    Article  CAS  Google Scholar 

  7. Cui Y, Lian X, Xu L, Chen M, Yang B, Wu CE, Hu X (2019) Designing and fabricating ordered mesoporous metal oxides for CO2 catalytic conversion: a review and prospect. Materials 12(2):276

    Article  CAS  Google Scholar 

  8. Soler-Illia GJAA, Vensaus P, & Onna D (2021) Chemical methods to produce mesoporous thin films with tunable properties. In Chemical Solution Synthesis for Materials Design and Thin Film Device Applications (pp. 195–229). Elsevier

  9. Angelomé PC, & Fuertes MC (2018) Metal nanoparticles-mesoporous oxide nanocomposite thin films. Handbook of Sol-Gel Science and Technology; Klein L, Aparicio M, Jitianu A, Eds. 1–27

  10. Gacoin T, Besson S, Boilot JP (2006) Organized mesoporous silica films as templates for the elaboration of organized nanoparticle networks. J Phys: Condens Matter 18(13):S85

    CAS  Google Scholar 

  11. Rubino A, Caliò L, García‐Bennett A, Calvo ME, Míguez H (2020) Mesoporous matrices as hosts for metal halide perovskite nanocrystals. Adv Optical Mater 8(9):1901868

    Article  CAS  Google Scholar 

  12. Angelomé PC, & Fuertes MC (2016) Metal nanoparticles-mesoporous oxide nanocomposite thin films. Handbook of Sol-Gel Science and Technology; Klein, L., Aparicio, M., Jitianu, A., Eds. 1–27

  13. Patel MN, Williams RD, May RA, Uchida H, Stevenson KJ, Johnston KP (2008) Electrophoretic deposition of Au nanocrystals inside perpendicular mesochannels of TiO2. Chem Mater 20(19):6029–6040

    Article  CAS  Google Scholar 

  14. Cortial G, Siutkowski M, Goettmann F, Moores A, Boissière C, Grosso D, Sanchez C (2006) Metallic nanoparticles hosted in mesoporous oxide thin films for catalytic applications. Small 2(8‐9):1042–1045

    Article  CAS  Google Scholar 

  15. Bastakoti BP, Kuila D, Salomon C, Konarova M, Eguchi M, Na J, Yamauchi Y (2021) Metal-incorporated mesoporous oxides: synthesis and applications. J Hazard Mater 401:123348

    Article  CAS  Google Scholar 

  16. Battie Y, Destouches N, Chassagneux F, Jamon D, Bois L, Moncoffre N, Toulhoat N (2011) Optical properties of silver nanoparticles thermally grown in a mesostructured hybrid silica film. Opt Mater Express 1:1019–33

    Article  CAS  Google Scholar 

  17. Wolosiuk A, Tognalli NG, Martínez ED, Granada M, Fuertes MC, Troiani H, Bilmes SA, Fainstein A, Soler-Illia GJ (2014) Silver nanoparticle-mesoporous oxide nanocomposite thin films: a platform for spatially homogeneous SERS-active substrates with enhanced stability. ACS Appl Mater interfaces 6(7):5263–5272

    Article  CAS  Google Scholar 

  18. Gazoni RM, Bellino MG, Fuertes MC, Giménez G, Soler-Illia GJ, Ricci MLM (2017) Designed nanoparticle–mesoporous multilayer nanocomposites as tunable plasmonic–photonic architectures for electromagnetic field enhancement. J Mater Chem C 5(14):3445–3455

    Article  CAS  Google Scholar 

  19. Lam KF, Yeung KL, Mckay G (2007) Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity. Environ Sci Technol 41(9):3329–3334

    Article  CAS  Google Scholar 

  20. Hu Y, Misal Castro LC, Drouin E, Florek J, Kählig H, Larivière D, Fontaine FG (2019) Size-selective separation of rare earth elements using functionalized mesoporous silica materials. ACS Appl Mater interfaces 11(26):23681–23691

    Article  CAS  Google Scholar 

  21. Fukuoka A, Araki H, Kimura JI, Sakamoto Y, Higuchi T, Sugimoto N, Ichikawa M (2004) Template synthesis of nanoparticle arrays of gold, platinum and palladium in mesoporous silica films and powders. J Mater Chem 14(4):752–756

    Article  CAS  Google Scholar 

  22. Bronstein, LM (2003). Nanoparticles made in mesoporous solids. In Colloid Chemistry I (pp. 55–89). Springer Berlin Heidelberg.

  23. Besson S, Gacoin T, Ricolleau C, Jacquiod C, Boilot JP (2002) 3D quantum dot lattice inside mesoporous silica films. Nano Lett 2(4):409–414

    Article  CAS  Google Scholar 

  24. Gu J, Shi J, Xiong L, Chen H, Ruan M (2004) A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films. Microporous mesoporous Mater 74(1):199–204

    Article  CAS  Google Scholar 

  25. Chae WS, Yoon JH, Yu H, Jang DJ, Kim YR (2004) Ultraviolet emission of ZnS nanoparticles confined within a functionalized mesoporous host. J Phys Chem B 108(31):11509–11513

    Article  CAS  Google Scholar 

  26. Fischereder A, Martinez-Ricci ML, Wolosiuk A, Haas W, Hofer F, Trimmel G, Soler-Illia GJ (2012) Mesoporous ZnS thin films prepared by a nanocasting route. Chem Mater 24(10):1837–1845

    Article  CAS  Google Scholar 

  27. Bastola E, Subedi KK, Alfadhili FK, Phillips AB, Heben MJ, Ellingson RJ (2020) Successive Ionic layer adsorption and reaction‐deposited transparent Cu–Zn–S nanocomposites as hole transport materials in CdTe photovoltaics. Energy Technology 8(10):2000429

    Article  CAS  Google Scholar 

  28. Nicolau YF (1985) Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Appl Surf Sci 22:1061–1074

    Article  Google Scholar 

  29. Lee H, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Gratzel M, Nazeeruddin MK (2009) Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9(12):4221–4227

    Article  CAS  Google Scholar 

  30. Samadpour M, Giménez S, Boix PP, Shen Q, Calvo ME, Taghavinia N, Mora-Seró I (2012) Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. Electrochim Acta 75:139–147

    Article  CAS  Google Scholar 

  31. Dickson DJ, Lassetter B, Glassy B, Page CJ, Yokochi AF, Ely RL (2013) Diffusion of dissolved ions from wet silica sol–gel monoliths: implications for biological encapsulation. Colloids Surf B: Biointerfaces 102:611–619

    Article  CAS  Google Scholar 

  32. Perullini M, Jobbágy M, Japas ML, Bilmes SA (2014) New method for the simultaneous determination of diffusion and adsorption of dyes in silica hydrogels. J Colloid Interface Sci 425:91–95

    Article  CAS  Google Scholar 

  33. Takahashi R, Sato S, Sodesawa T, Nishida H (2002) Effect of pore size on the liquid-phase pore diffusion of nickel nitrate. Phys Chem Chem Phys 4(15):3800–3805

    Article  CAS  Google Scholar 

  34. Zhokh A, Strizhak P (2019) Investigation of the anomalous diffusion in the porous media: a spatiotemporal scaling. Heat Mass Transf 55(9):2693–2702

    Article  Google Scholar 

  35. Boissiere C, Grosso D, Lepoutre S, Nicole L, Bruneau AB, Sanchez C (2005) Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir 21(26):12362–12371

    Article  CAS  Google Scholar 

  36. Fuertes MC, Marchena M, Marchi MC, Wolosiuk A, Soler-Illia GJAA (2009) Controlled deposition of silver nanoparticles in mesoporous single-or multilayer thin films: from tuned pore filling to selective spatial location of nanometric objects. Small 5(2):272–280

    Article  CAS  Google Scholar 

  37. Thanh NT, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114(15):7610–7630

    Article  CAS  Google Scholar 

  38. Oyetade O, Nyamori V, Jonnalagadda S, Martincigh B (2018) Removal of Cd2+ and Hg2+ from aqueous solutions by adsorption onto nitrogen-functionalized carbon nanotubes. Desalination Water Treat 108:253–267.

  39. Villa D & Lens PNL (2017) Metal Recovery from Industrial and Mining Wastewaters. Sustainable Heavy Metal Remediation, 81–114.

  40. Alcober C, Bilmes SA (2002) Potential distribution at the semiconductor thin film/electrolyte interface with high density of grain boundaries. Thin Solid Films 405(1–2):55–63

    Article  CAS  Google Scholar 

  41. Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  42. Onna D, Ipina IP, Casafuz AF, Mayoral Á, García MRI, Bilmes SA, Ricci MLM (2019) Diameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination. Nanoscale Adv 1(9):3499–3505

    Article  CAS  Google Scholar 

  43. Gazoni RM, Bellino MG, Fuertes MC, Giménez G, Soler-Illia GJ, Ricci MLM (2017) Designed nanoparticle–mesoporous multilayer nanocomposites as tunable plasmonic–photonic architectures for electromagnetic field enhancement. J Mater Chem C 5(14):3445–3455

    Article  CAS  Google Scholar 

  44. Regazzoni AE, Blesa MA, Maroto AJG (1983) Interfacial properties of zirconium dioxide and magnetite in water. J Colloid Interface Sci 91:560–570

    Article  CAS  Google Scholar 

  45. Mueller R, Kammler HK, Wegner K, Pratsinis SE (2003) OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 19(1):160–165

    Article  CAS  Google Scholar 

  46. Abdelsamad A, Khalil A & Ulbricht M (2018) Influence of controlled functionalization of mesoporous silica nanoparticles as tailored fillers for thin-film nanocomposite membranes on desalination performance. J Membrane Sci 563.

  47. Haynes, WM (Ed.). (2014) CRC handbook of chemistry and physics. CRC press

  48. Karnes JJ, Gobrogge EA, Walker RA, Benjamin I (2015) Unusual structure and dynamics at silica/methanol and silica/ethanol interfaces - a molecular dynamics and nonlinear optical study. J Phys Chem B 120(8):1569–1578

    Article  CAS  Google Scholar 

  49. Zhang L, Liu W, Shen YR, Cahill DG (2007) Competitive molecular adsorption at liquid/solid interfaces: a study by sum-frequency vibrational spectroscopy. J Phys Chem C 111(5):2069–2076

    Article  CAS  Google Scholar 

  50. Roy S, Covert PA, Jarisz TA, Chan C, Hore DK (2016) Surface–bulk vibrational correlation spectroscopy. Anal Chem 88(9):4682–4691

    Article  CAS  Google Scholar 

  51. Inada Y, Hayashi H, Sugimoto KI, Funahashi S (1999) Solvation structures of manganese (II), iron (II), cobalt (II), nickel (II), copper (II), zinc (II), and gallium (III) ions in methanol, ethanol, dimethyl sulfoxide, and trimethyl phosphate as studied by EXAFS and electronic spectroscopies. J Phys Chem A 103(10):1401–1406

    Article  CAS  Google Scholar 

  52. Migliorati V, Zitolo A, Chillemi G, D’Angelo P (2012) Influence of the second coordination shell on the XANES spectra of the Zn2+ ion in water and methanol. ChemPlusChem 77(3):234–239

    Article  CAS  Google Scholar 

  53. Wawer J, Warmińska D, Grzybkowski W (2011) Solvation of multivalent cations in methanol–Apparent molar volumes, expansibilities, and isentropic compressibilities. J Chem Thermodyn 43(11):1731–1737

    Article  CAS  Google Scholar 

  54. Migliorati V, Chillemi G, D’Angelo P (2011) On the solvation of the Zn2+ ion in methanol: a combined quantum mechanics, molecular dynamics, and EXAFS approach. Inorg Chem 50(17):8509–8515

    Article  CAS  Google Scholar 

  55. Tam HH, Asthagiri D, Paulaitis ME (2012) Coordination state probabilities and the solvation free energy of Zn2+ in aqueous methanol solutions. J Chem Phys 137(16):164504

    Article  CAS  Google Scholar 

  56. Srour RK, McDonald LM (2011) Solution properties of inorganic contamination in mixed solvents: theory, progress, and limitations. Crit Rev Environ Sci Technol 41(6):521–621

    Article  CAS  Google Scholar 

  57. Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S (2015) Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal 5(6):3625–3637

    Article  CAS  Google Scholar 

  58. Gervas C, Mlowe S, Akerman MP, Revaprasadu N (2018) Phase pure Ni 3S 2 and NiS from bis (N′-ethyl-N-piperazinylcarbodithioato-S, S′)–nickel (ii) via solvent thermolysis and aerosol assisted chemical vapour deposition. N. J Chem 42(8):6203–6209

    Article  CAS  Google Scholar 

  59. Salavati-Niasari M, Banaiean-Monfared G, Emadi H, Enhessari M (2013) Synthesis and characterization of nickel sulfide nanoparticles via cyclic microwave radiation. Comptes Rendus Chim 16(10):929–936

    Article  CAS  Google Scholar 

  60. Kristl M, Dojer B, Gyergyek S, Kristl J (2017) Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon 3(3):e00273

    Article  Google Scholar 

  61. Pourahmad A, Sohrabnezhad S (2011) Synthesis and characterization of CoS nanoparticles encapsulated in mesoporous aluminosilicate material by solid-state reaction. Mater Lett 65(2):205–207

    Article  CAS  Google Scholar 

  62. Mashford B, Baldauf J, Nguyen TL, Funston AM, Mulvaney P (2011) Synthesis of quantum dot doped chalcogenide glasses via sol-gel processing. J Appl Phys 109(9):094305

    Article  CAS  Google Scholar 

  63. Hodes, G (2002). Chemical solution deposition of semiconductor films. CRC press.

  64. Prelot B, Lantenois S, Chorro C, Charbonnel MC, Zajac J, Douillard JM (2011) Effect of nanoscale pore space confinement on cadmium adsorption from aqueous solution onto ordered mesoporous silica: a combined adsorption and flow calorimetry study. J Phys Chem C 115(40):19686–19695

    Article  CAS  Google Scholar 

  65. Soler-Illia GJAA, Angelomé PC, Fuertes MC, Calvo A, Wolosiuk A, Zelcer A, Martínez ED (2011) Mesoporous hybrid and nanocomposite thin films. A sol–gel toolbox to create nanoconfined systems with localized chemical properties. J sol-gel Sci Technol 57(3):299–312

    Article  CAS  Google Scholar 

  66. Otal EH, Angelomé PC, Bilmes SA, Soler-Illia GJ (2006) Functionalized mesoporous hybrid thin films as selective membranes. Adv Mater 18(7):934–938

    Article  CAS  Google Scholar 

  67. Walsh MJ, Ahner BA (2013) Determination of stability constants of Cu (I), Cd (II) & Zn (II) complexes with thiols using fluorescent probes. J Inorg Biochem 128:112–123

    Article  CAS  Google Scholar 

  68. Zaid IM, Lomholt MA, Metzler R (2009) How subdiffusion changes the kinetics of binding to a surface. Biophysical J 97(3):710–721

    Article  CAS  Google Scholar 

  69. Rubino A, Caliò L, García-Bennett A, Calvo ME, Míguez H (2020) Mesoporous matrices as hosts for metal halide perovskite nanocrystals. Adv Optical Mater 8(9):1901868

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Universidad de Buenos Aires (UBACyT 20020190200245BA & 20020190100299BA) and CONICET funding PIP 11220170100289CO. ABTLus is kindly acknowledged for permitting access to LNLS synchrotron (project XRD1-15366). MCM, SAB and MLMR are members of CONICET. Ezequiel Ortiz is kindly acknowledged for 3D standalone pore schemes. We thank reviewers and specially the editor for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María Luz Martínez Ricci or Sara A. Bilmes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onna, D., Marchi, M.C., Martínez Ricci, M.L. et al. Loading insoluble sulfides in mesoporous oxide films from precursors in solution. J Sol-Gel Sci Technol 102, 264–278 (2022). https://doi.org/10.1007/s10971-021-05718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05718-4

Keywords

Navigation