Skip to main content
Log in

Improvement of ZrB2 nanopowder synthesis by sol-gel method via zirconium alkoxide/boric acid precursors

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, ZrB2 nanoparticles were synthesized using sol-gel method. Zirconium alkoxide was used as the source of zirconium and boric acid as the source of boron. The size of precursor nanoparticle was controlled using the pH parameter inside the sol, and the formation of primary nuclei of ZrB2 phase and their crystallized amount were investigated using the temperature parameter. To evaluate the mechanism of product formation during the sol-gel process, TEM, SEM, DTA/TG, RAMAN, XRD, FTIR, and DLS methods were used. DLS analysis showed that the size of precursor particle inside the sol at pH less than 5 was below 10 nm. Measurements of viscosity and zeta potential inside the sol showed that in the acidic range, the particle stability decreases with increasing pH. Mixing of precursor particles at molecular level inside the sol was one of the important reasons in reducing the synthesis temperature of ZrB2 particles. FTIR analysis on chemical bonds showed that Zr-O-B bond was formed inside the gel powder. DTA analysis showed that the primary nuclei of ZrB2 particles were formed at a temperature of about 1400 °C. XRD observations proved that the primary nuclei of the ZrB2 phase crystallized and grew at a temperature of about 1500 °C. Surface research revealed that the specific surface area of the synthesized ZrB2 particles is equivalent to 115 m2/g, and also the surfaces of these particles are porous, and the size of these porosities is in meso range. SEM analysis showed that the particle size of ZrB2 having homogeneous morphology is about 50 nm. TEM microstructural analysis revealed that ZrB2 particles were formed uniformly and orderly in very fine dimensions.

Graphical abstract

Highlights

  • Synthesis of controlled ZrB2 nanoparticle through pH-assisted sol-gel is presented.

  • The most important goal is to achieve very high homogeneity with the appropriate chemical composition of the product.

  • The results showed exceptional role of pH, temperature and ratio of precursors on final product characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Guo SQ (2009) Densification of ZrB2-based composites and their mechanical and physical properties: a review”. J Eur Ceram Soc 29(6):995–1011

    Article  CAS  Google Scholar 

  2. Asl MS, Nayebi B, Ahmadi Z, Zamharir MJ, Shokouhimehr M (2018) Effects of carbon additives on the properties of ZrB2–based composites: a review”. Ceram Int 44(7):7334–7348

    Article  CAS  Google Scholar 

  3. Li R, Zhang Y, Lou H, Li J, Feng Z (2011) Synthesis of ZrB2 nanoparticles by sol-gel method”. J sol-gel Sci Technol 58(2):580–585

    Article  CAS  Google Scholar 

  4. Zhang Y, Li R, Jiang Y, Zhao B, Duan H, Li J, Feng Z (2011) Morphology evolution of ZrB2 nanoparticles synthesized by sol–gel method”. J Solid State Chem 184(8):2047–2052

    Article  CAS  Google Scholar 

  5. Yang LJ, Zhu SZ, Xu Q, Yan ZY, Liu L (2010) “Synthesis of ultrafine ZrB2 powders by sol-gel process”. Front Mater Sci China 4(3):285–290

    Article  Google Scholar 

  6. Medveď D, Balko J, Sedlák R, Kovalčíková A, Shepa I, Naughton-Duszová A, Bączek E, Podsiadło M, Dusza J (2019) “Wear resistance of ZrB2 based ceramic composites”. Int J Refractory Met Hard Mater 81:214–224

    Article  Google Scholar 

  7. Zimmermann JW, Hilmas GE, Fahrenholtz WG, Dinwiddie RB, Porter WD, Wang H (2008) Thermophysical properties of ZrB2 and ZrB2–SiC ceramics”. J Am Ceram Soc 91(5):1405–1411

    Article  CAS  Google Scholar 

  8. Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) High‐strength zirconium diboride‐based ceramics”. J Am Ceram Soc 87(6):1170–1172

    Article  CAS  Google Scholar 

  9. Kagawa Y, Guo S (2014) “Ultrahigh Temperature Ceramic‐Based Composites”. Ceramic Matrix Composites: Materials, Modeling and Technology. pp.273–292

  10. Nayebi B, Parvin N, Mohandesi JA, Asl MS (2020) Effect of Zr and C co-addition on the characteristics of ZrB2-based ceramics: role of spark plasma sintering temperature”. Ceram Int 46:24975–24985

    Article  CAS  Google Scholar 

  11. Asl MS, Nayebi B, Akhlaghi M, Ahmadi Z, Tayebifard SA, Salahi E, Shokouhimehr M, Mohammadi M (2021) A novel ZrB2-based composite manufactured with Ti3AlC2 additive”. Ceram Int 47:817–827

    Article  Google Scholar 

  12. Khoeini M, Najafi A, Rastegar H, Amani M (2019) “Improvement of hollow mesoporous silica nanoparticles synthesis by hard-templating method via CTAB surfactant”. Ceram Int 45:12700–12707

    Article  CAS  Google Scholar 

  13. Najafi A, Ghasemi S (2017) A study of APC surfactant role on the surface characteristics, size and morphology improvements of synthesized mesoporous silica nanopowder through a sol-gel process”. J Alloy Compd 720:423–431

    Article  CAS  Google Scholar 

  14. Fakhimi O, Najafi A, Khalaj G (2021) “A facile rout to obtain Al2O3 nanopowder via recycling aluminum cans by sol-gel method”. Mater Res Express 7:1–12

    Google Scholar 

  15. Najafi A, Golestani-Fard F, Rezaie HR, Ehsani N (2011) Synthesis and characterization ofsilicon carbide nano powder bysolgelprocessing”. Iran J Mater Sci Eng 8:41–47

    CAS  Google Scholar 

  16. Abolhassan Najafi F, Golestani-Fard HR (2020) Rezaie, Saviz Parsa Saeb, “Sol-Gel synthesis and characterization of SiC–B4C nano powder”,. Ceram Int 47:6376–6587

    Article  Google Scholar 

  17. Najafi A, Golestani-Fard F, Rezaie HR, Ehsani N (2011) A study on sol–gel synthesis and characterization of SiC nano powder”. J Sol-Gel Sci Technol 59:205–214

    Article  CAS  Google Scholar 

  18. Seog I, Kim CH(1993) Preparation of monodispersed spherical silicon carbide by the sol–gel method J Mater Sci 28:3277–3282

    Article  CAS  Google Scholar 

  19. Najafi A, Golestani Fard F, Rezaie HR, Ehsani N (2012) Synthesis and characterization of SiC nano powder with low residual carbon processed by sol–gel method”. Powder Technol 219:202–210

    Article  CAS  Google Scholar 

  20. Abolhassan Najafi F, Golestani-Fard HR (2018) Rezaie, “Sol-gel synthesis and characterization of B4C nanopowder”. Ceram Int 44:21386–21394

    Article  Google Scholar 

  21. Najafi A, Golestani-Fard F, Rezaie HR (2015) Improvement of SiC nanopowder synthesis by sol–gel method via TEOS/resin phenolic precursors”,. J Sol-Gel Sci Technol 75:255–263

    Article  CAS  Google Scholar 

  22. Chen Z, Zhao X, Li M, Wang H, Li Q, Shao G, Liu W, Xu H, Lu H, Zhang R, An L (2019) Synthesis of rod-like ZrB2 crystals by boro/carbothermal reduction”. Ceram Int 45:13726–13731

    Article  CAS  Google Scholar 

  23. Shen H, Li X, Hu C, Wang Z, Hu X, Li Y, Yan J (2021) Effect of dispersants on the physicochemical properties of ultra-fine ZrB2 powder in Sol-gel synthesis”. Surf Interfaces 25:101162

    Article  CAS  Google Scholar 

  24. Yang B, Li J, Zhao B, Hu Y, Wang T, Sun D, Li R, Yin S, Feng Z, Tang Q, Sato T (2014) Synthesis of hexagonal-prism-like ZrB2 by a sol–gel route”. Powder Technol 256:522–528

    Article  CAS  Google Scholar 

  25. Ji H, Yang M, Li M, Ji G, Fan H, Sun X (2014) “Low-temperature synthesis of ZrB2 nano-powders using a sorbitol modified sol–gel processing route”. Adv Powder Technol 25:910–915

    Article  CAS  Google Scholar 

  26. Changqing L, Chang X, Wu Y, Li X, Xue Y, Wang X, Hou X (2020) “In-situ synthesis of ultra-fine ZrB2–ZrC–SiC nanopowders by sol-gel method.”. Ceram Int 46(6):7099–7108

    Article  Google Scholar 

  27. Song S, Li R, Gao L, Sun C, Hu P, Zhen Q (2018) “Synthesis and growth behavior of micron-sized rod-like ZrB2 powders”. Ceram Int 44(5):4640–4645

    Article  CAS  Google Scholar 

  28. Kiryukhantsev-Korneev P, Sytchenko A, Kaplanskii Y, Sheveyko A, Vorotilo S, Levashov E (2021) Structure, corrosion resistance, mechanical and tribological properties of ZrB2 and Zr-BN coatings. Metals 11(8):1194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolhassan Najafi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani-Azad, M., Najafi, A., Rahmani-Azad, N. et al. Improvement of ZrB2 nanopowder synthesis by sol-gel method via zirconium alkoxide/boric acid precursors. J Sol-Gel Sci Technol 103, 87–96 (2022). https://doi.org/10.1007/s10971-022-05788-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05788-y

Keywords

Navigation