We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Free-standing and binder-free porous monolithic electrodes prepared via sol–gel processes

  • Invited Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Electrochemical devices that harvest or store electrical energy are indispensable to our daily life and are currently of growing importance in the future prosperity of the world economy. The sol–gel technology has contributed substantially to the development of electrode materials and electrocatalysts, particularly in terms of the synthesis of nano-sized and/or nanostructured particles. As with the other application fields, nanomaterials with enriched active surface sites can enhance electrode performance, and hence, have been substituted for the classical low-surface-area electrodes like rods and plates. However, the powdery nanomaterials need to be fixed on an electrode substrate in a mixture with binders and conductive agents, which imposes several drawbacks especially in fundamental research. In this context, free-standing and binder-free monolithic electrodes bearing rationally designed nanostructures have emerged as advanced electrode materials based on the concept of incorporating the nanomaterials into the classical bulky electrodes. This review focuses on the recent progress in porous monolithic electrodes with special concern for those with three-dimensionally interconnected porous structures prepared via the sol–gel processes accompanied by phase separation. In addition to the synthesis and pore control for various electrode materials, the insights garnered from the electrochemical investigations on the porous monolithic electrodes are overviewed.

Graphical abstract

Highlights

  • Synthesis and pore control of electronically conductive monolithic materials via a variety of sol–gel reactions accompanied by phase separation are overviewed.

  • Free-standing and binder-free electrodes based on the porous conductive monoliths have various advantages over the conventional composite electrodes derived from powdery electrode materials.

  • Electrochemical applications of each porous monolithic electrode such as supercapacitors and rechargeable Li-ion and Na-ion batteries are introduced.

  • Based on the findings obtained with the porous monolithic electrodes, the insights and guidelines for designing electrodes are proposed.

  • Porous monolithic electrodes with controlled pore properties are not only useful for the fundamental research but also promising to develop advanced energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Rockström J, Gaffney O, Rogelj J, Meinshausen M, Nakicenovic N, Schellnhuber HJ (2017) A roadmap for rapid decarbonization. Science355:1269–1271

    Article  Google Scholar 

  2. Kittner N, Lill F, Kammen DM (2017) Energy storage deployment and innovation for the clean energy transition. Nat Energy 2:17125

    Article  Google Scholar 

  3. Tian Y, Zeng G, Rutt A, Shi T, Kim H, Wang J, Koettgen J, Sun Y, Ouyang B, Chen T, Lun Z, Rong Z, Persson K, Ceder G (2021) Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem Rev 121:1623–1669

    Article  CAS  Google Scholar 

  4. Wei C, Rao RR, Peng J, Huang B, Stephens IEL, Risch M, Xu ZJ, Shao-Horn Y (2019) Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv Mater 31:1806296

    Article  CAS  Google Scholar 

  5. Yu ZY, Duan Y, Fen XY, Yu X, Gao MR, Yu SH (2021) Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater 33:2007100

    Article  CAS  Google Scholar 

  6. Qing G, Ghazfar R, Jackowski ST, Habibzadeh F, Ashtiani MM, Chen CP, Smith III MR, Hamann TW (2020) Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem Rev 120:5437–5516

    Article  CAS  Google Scholar 

  7. Martin AJ, Larrazábal GO, Pérez-Ramírez J (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis. Green Chem 17:5114–5130

    Article  CAS  Google Scholar 

  8. Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L (2021) Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 50:4993–5061

    Article  CAS  Google Scholar 

  9. Chatterjee S, Dutta I, Lum Y, Lai Z, Huang KW (2021) Enabling storage and utilization of low-carbon electricity: power to formic acid. Energy Environ Sci 14:1194–1246

    Article  CAS  Google Scholar 

  10. Mota FM, Kim DH (2019) From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chem Soc Rev 48:205–259

    Article  Google Scholar 

  11. Grim G, Huang Z, Guarnieri MT, Ferrell III JR, Tao L, Schaidle JA (2020) Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy Environ Sci 13:472–494

    Article  CAS  Google Scholar 

  12. Staffell L, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR (2019) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12:463–491

    Article  CAS  Google Scholar 

  13. Kraytsberg A, Ein-Eli Y (2016) Converying advanced Li-ion battery materials into practice the impact of electrode slurry preparation skills. Adv Energy Mater 6:1600655

    Article  CAS  Google Scholar 

  14. Kwade A, Haselrieder W, Leithoff R, Modlinger A, Dietrich F, Droeder K (2018) Current status and challenges for automotive battery production technologies. Nat Energy 3:290–300

    Article  Google Scholar 

  15. Tran HY, Täubert C, Wohlfahrt-Mehrens M (2014) Influence of the technical process parameters on structural mechanical and electrochemical properties of LiNi0.8Co0.15Al0.05O2 based electrodes—a review. Prog Solid State Chem 42:118–127

    Article  CAS  Google Scholar 

  16. Haselrieder W, Ivanov S, Tran HY, Theil S, Froböse L, Westphal B, Wohlfahrt-Mehrens M, Kwade A (2014) Influence of formulation method and related processes on structural, electrical and electrochemical properties of LMS/NCA-blend electrodes. Prog Solid State Chem 42:157–174

    Article  CAS  Google Scholar 

  17. Zhang YS, Courtier NE, Zhang Z, Liu K, Bailey JJ, Boyce AM, Richardson G, Shearing PR, Kendrick E, Brett DJL (2022) A review of lithium-ion battery electrode drying: mechanisms and metrology. Adv Energy Mater 12:2102233

    Article  CAS  Google Scholar 

  18. Sato H, Takahashi D, Nishina T, Uchida I (1997) Electrochemical characterization of thin-film LiCoO2 electrodes in propylene carbonate solutions. J Power Sources 68:540–544

    Article  CAS  Google Scholar 

  19. Xia H, Lu L, Ceder G (2006) Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J Power Sources 159:1422–1427

    Article  CAS  Google Scholar 

  20. McGraw JM, Bahn CS, Parilla PA, Perkins JD, Readey DW, Ginley DS (1999) Li ion diffusion measurements in V2O5 and Li(Co1−xAlx)O2 thin-film battery cathodes. Electrochim Acta 45:187–196

    Article  CAS  Google Scholar 

  21. Li J, Dozier AK, Li Y, Yang F, Cheng YT (2011) Crack pattern formation in thin film lithium-ion battery electrodes. J Electrochem Soc 158:A689–A694

    Article  CAS  Google Scholar 

  22. Yao F, Günes F, Ta HQ, Lee SM, Chae SJ, Sheem KY, Cojocaru CS, Xie SS, Lee YH (2012) Diffusion mechanism of lithium ion through basal plane of layered graphene. J Am Chem Soc 134:8646–8654

    Article  CAS  Google Scholar 

  23. Miyahara Y, Miyazaki K, Fukutsuka T, Abe T (2014) Catalytic roles of perovskite oxides in electrochemical oxygen reactions in alkaline media. J Electrochem Soc 161:F694–F697

    Article  CAS  Google Scholar 

  24. Pnchon JL, Cespuglio R, Conon F, Jouvet M, Pujol JF (1979) Normal pulse polarography with carbon fiber electrodes for in vitro and in vivo determination of catecholamines. Anal Chem 9:1483–1486

    Article  Google Scholar 

  25. Wightman RM (1981) Microvoltammetric electrodes. Anal Chem 53:1125–1134

    Article  Google Scholar 

  26. Nishizawa M, Uchida I (1999) Microelectrode-based characterization systems for advanced materials in battery and sensor applications. Electrochim Acta 44:3629–3637

    Article  CAS  Google Scholar 

  27. Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M, Uchida I (2001) Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc 148:A422–A426

    Article  CAS  Google Scholar 

  28. Heubner C, Langklotz U, Lämmel C, Shneider M, Michaelis A (2020) Electrochemical single-particle measurements of electrode materials for Li-ion batteries: possibilities, insights and implications for future development. Electrochim Acta 330:135160

    Article  CAS  Google Scholar 

  29. Liu XH, Zheng H, Zhong L, Huang S, Karki K, Qiang L, Zhang W, Liu Y, Kushima A, Liang WT, Wang JW, Cho JH, Epstein E, Dayeh SA, Mao SX, Ye ZZ, Zhang S, Huang JY (2011) Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett 11:3312–3318

    Article  CAS  Google Scholar 

  30. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6:1522–1531

    Article  CAS  Google Scholar 

  31. McDowell MT, Ryu I, Lee SW, Wang C, Nix WD, Cui Y (2012) Studying the kinetics of crystalline silicon nanoparticles lithiation with in situ transmission electron microscopy. Adv Mater 24:6034–6041

    Article  CAS  Google Scholar 

  32. Blacman LCF, Ubbelohde AR (1962) Stress recrystallization of graphite. Proc R Soc Lond 266:20–32

    Google Scholar 

  33. Moore AW, Ubbelohde AR, Young DA (1964) Stress recrystallization of pyrolytic graphite. Proc R Soc Lond 280:153–169

    CAS  Google Scholar 

  34. Bowling RJ, Packard RT, McCreery RL (1989) Activation of highly oriented pyrolytic graphite for heterogeneous electron transfer: relationship between electrochemical performance and carbon microstructure. J Am Chem Soc 111:1217–1223

    Article  CAS  Google Scholar 

  35. Bar-Tow D, Peled E, Burstein L (1999) A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J Electrochem Soc 146:824–832

    Article  CAS  Google Scholar 

  36. Jeong SK, Inaba M, Abe T, Ogumi Z (2001) Surface film formation on graphite negative electrode in lithium-ion batteries. J Electrochem Soc 148:A989–A993

    Article  CAS  Google Scholar 

  37. Abe T, Fukuda H, Iriyama Y, Ogumi Z (2004) Solvated Li-ion transfer at interface between graphite and electrolyte. J Electrochem Soc 151:A1120–A1123

    Article  CAS  Google Scholar 

  38. Ota H, Sakata Y, Inoue A, Yamaguchi S (2004) Analysis of vinylene carbonate derived SEI layers on graphite anode. J Electrochem Soc 151:A1659–A1669

    Article  CAS  Google Scholar 

  39. Yamada Y, Iriyama Y, Abe T, Ogumi Z (2009) Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. Langmuir 25:12766–12770

    Article  CAS  Google Scholar 

  40. Patel AN, Collignon MG, O’Connell MA, Hung WOY, McKelvey K, Macpherson JV, Unwin PR (2012) A new view of electrochemistry at highly oriented pyrolytic graphite. J Am Chem Soc 134:20117–20130

    Article  CAS  Google Scholar 

  41. Gostick JT, Ioannidis MA, Fowler MW, Pritzker MD (2007) Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells. J Power Sources 173:277–290

    Article  CAS  Google Scholar 

  42. Maier J (2014) Control parameters for electrochemically relevant materials: the significance of size and complexity. Faraday Discuss 176:17–29

    Article  CAS  Google Scholar 

  43. Stein A, Li F, Denny NR (2008) Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chem Mater 20:649–666

    Article  CAS  Google Scholar 

  44. Stein A, Wilson BE, Rudisill SG (2013) Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals. Chem Soc Rev 42:2763–2803

    Article  CAS  Google Scholar 

  45. Cameron NR (2005) High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46:1439–1449

    Article  CAS  Google Scholar 

  46. Zhang H, Cooper AI (2005) Synthesis and applications of emulsion-templated porous materials. Soft Matter 1:107–113

    Article  CAS  Google Scholar 

  47. Gutiérrez M, Ferrer ML, del Monte F (2008) Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20:634–648

    Article  CAS  Google Scholar 

  48. Scotti KL, Dunand DC (2018) Freeze casting—a review of processing, microstructure and properties via the open data repository, FreezeCasting.net. Prog Mater Sci 94:243–305

    Article  CAS  Google Scholar 

  49. Smått JH, Weidenthaler C, Bosenholm JB, Lindén M (2006) Hierarchically porous metal oxide monoliths prepared by the nanocasting route. Chem Mater 18:1443–1450

    Article  CAS  Google Scholar 

  50. Lu AH, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805

    Article  CAS  Google Scholar 

  51. Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112

    Article  CAS  Google Scholar 

  52. Nakanishi K, Kanamori K (2005) Organic-inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J Mater Chem 15:3776–3786

    Article  CAS  Google Scholar 

  53. Fang B, Kim JH, Kim MS, Yu JS (2013) Hirarchical nanostructured carbon with meso-macroporosity: design, characterization, and applications. Acc Chem Res 46:1397–1406

    Article  CAS  Google Scholar 

  54. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592

    Article  CAS  Google Scholar 

  55. Feinle A, Elsaesser MS, Hüsing N (2016) Sol–gel synthesis of monolithic materials with hierarchical porosity. Chem Soc Rev 45:3377–3399

    Article  CAS  Google Scholar 

  56. Liu T, Zhang F, Song Y, Li Y (2017) Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem A 5:17705–17733

    Article  CAS  Google Scholar 

  57. Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL (2017) Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 46:481–558

    Article  CAS  Google Scholar 

  58. Lu X, Hasegawa G, Kanamori K, Nakanishi K (2020) Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition. J Sol–Gel Sci Technol 95:530–550

    Article  CAS  Google Scholar 

  59. Izadi-Najafadadi A, Yasuda S, Kobayashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K (2010) Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater 22:E235–E241

    Article  CAS  Google Scholar 

  60. Nishihara H, Simura T, Kobayashi S, Nomura K, Berenguer R, Ito M, Uchimura M, Iden H, Arihara K, Ohma A, Hayasaka Y, Kyotani T (2016) Oxidation-resistant and elastic mesoporous carbon with single-layer graphene walls. Adv Funct Mater 26:6418–6427

    Article  CAS  Google Scholar 

  61. Nomura K, Nishihara H, Kobayashi N, Asada T, Kyotani T (2019) 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy Environ Sci 12:1542–1549

    Article  CAS  Google Scholar 

  62. Tagaya T, Hatakeyama Y, Shiraishi S, Tsukada H, Mostazo-López MJ, Morallón E, Cazorla-Amorós D (2020) J Electrochem Soc 167:060523

    Article  CAS  Google Scholar 

  63. Mayer ST, Pekala RW, Kaschmitter JL (1993) The aerocapacitor: an electrochemical double-layer energy-storage device. J Electrochem Soc 140:446–451

    Article  CAS  Google Scholar 

  64. Mecklenburg M, Schuchartdt A, Mishra YK, Kaps S, Adelung R, Lothnyk A, Kienle L, Schulte K (2012) Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv Mater 24:3486–3490

    Article  CAS  Google Scholar 

  65. Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS (2012) Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett 12:2446–2451

    Article  CAS  Google Scholar 

  66. Li N, Chen Z, Ren W, Li F, Cheng HM (2012) Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Nat Acad Sci 109:17360–17365

    Article  CAS  Google Scholar 

  67. Cao X, Zheng B, Rui X, Shi W, Yan Q, Zhang H (2013) Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew Chem Int Ed 53:1404–1409

    Article  CAS  Google Scholar 

  68. Nardecchia S, Carriazo D, Ferrer ML, Gutiérrez MC, del Monte F (2013) Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev 42:794–830

    Article  CAS  Google Scholar 

  69. Salihovic M, Schlee P, Herou S, Titirici MM, Hüsing N, Elsaesser MS (2021) Monolithic carbon spherogels as freestanding electrodes for supercapacitors. ACS Appl Energy Mater 4:11183–11193

    Article  CAS  Google Scholar 

  70. Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) Carbon electrodes for double-layer capacitors. J Electrochem Soc 147:2486–2493

    Article  CAS  Google Scholar 

  71. Whitby RLD, Fukuda T, Maekawa T, James SL, Mikhalovsky SV (2008) Goemetric control and tuneable pore size distribution of buckypaper and buckydiscs. Carbon 46:949–956

    Article  CAS  Google Scholar 

  72. Chew SY, Ng SH, Wang J, Novák P, Krumeich F, Chou SL, Chen J, Liu HK (2009) Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 47:2976–2983

    Article  CAS  Google Scholar 

  73. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv Mater 23:5641–5644

    Article  CAS  Google Scholar 

  74. Kobashi K, Hirabayashi T, Ata S, Yamada T, Futaba DN, Hata K (2013) Green, scalable, binderless fabrication of a single-walled carbon nanotube nonwoven fabric based on an ancient Japanese paper process. ACS Appl Mater Interfaces 5:12602–12608

    Article  CAS  Google Scholar 

  75. Yuksel R, Sarioba Z, Cirpan A, Hiralal P, Unalan HE (2014) Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. ACS Appl Mater Interfaces 6:15434–15439

    Article  CAS  Google Scholar 

  76. Chi YW, Hu CC, Shen HH, Huang KP (2016) New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping. Nano Lett 16:5719–5727

    Article  CAS  Google Scholar 

  77. Chen S, Qiu L, Chen HM (2020) Carbon-based fibers for advanced electrochemical energy storage devices. Chem Rev 120:2811–2878

    Article  CAS  Google Scholar 

  78. Shimizu T, Kobashi K, Nakajima H, Muroga S, Yamada T, Okazaki T, Hata K (2021) ACS Appl Energy Mater 4:9712–9720

    Article  CAS  Google Scholar 

  79. Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv Funct Mater 15:547–556

    Article  CAS  Google Scholar 

  80. Hu YS, Adelhelm P, Smarsly BM, Hore S, Antonietti M, Maier J (2007) Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv Funct Mater 17:1873–1878

    Article  CAS  Google Scholar 

  81. Brun N, Prabaharan SRS, Morcrette M, Sanchez C, Pécastaings G, Derré A, Soum A, Deleuze H, Birot M, Backov R (2009) Hard macrocellular silica Si(HIPE) foams templating micro/macroporous carbonaceous monoliths: applications as lithium ion battery negative electrodes and electrochemical capacitors. Adv Funct Mater 19:3136–3145

    Article  CAS  Google Scholar 

  82. Brun N, Prabaharan SRS, Surcin C, Morcrette M, Deleuze H, Birot M, Babot O, Achard MF, Backov R (2012) Design of hierarchical porous carbonaceous foams from a dual-template approach and their use as electrochemical capacitor and Li ion battery negative electrodes. J Phys Chem C 116:1408–1421

    Article  CAS  Google Scholar 

  83. Asfaw HD, Roberts M, Younesi R, Edström K (2013) Emulsion-templated bicontinuous carbon network electrodes for use in 3D microstructured batteries. J Mater Chem A 1:13750–13758

    Article  CAS  Google Scholar 

  84. Hayfield PCS (1983) Electrode material, electrode and electrochemical cell. US Patent 4,422,917

  85. Pollock RJ, Houlihan JF, Bain AN, Coryea BS (1984) Electrochemical properties of a new electrode material, Ti4O7. Mater Res Bull 19:17–24

    Article  CAS  Google Scholar 

  86. Walsh FC, Wills RGA (2010) The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes. Electrochim Acta 55:6342–6351

    Article  CAS  Google Scholar 

  87. Davies GJ, Zhen S (1983) Metallic foams: their production, properties and applications. J Mater Sci 18:1899–1911

    Article  CAS  Google Scholar 

  88. Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632

    Article  CAS  Google Scholar 

  89. Lefebvre LP, Banhart J, Dunand DC (2008) Porous metals and metallic foams: current status and recent developments. Adv Eng Mater 10:775–787

    Article  CAS  Google Scholar 

  90. Tappan BC, Steinerr III SA, Luther EP (2010) Nanoporous Met foams 49:4544–4565

    CAS  Google Scholar 

  91. Zhang H, Yu X, Braun PV (2011) Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat Nanotechnol 6:277–281

    Article  CAS  Google Scholar 

  92. Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, Valdevit L, Carter WB (2011) Science 334:962–965

    Article  CAS  Google Scholar 

  93. Ren Z, Yu J, Li Y, Zhi C (2018) Tunable free-standing ultrathin porous nickel film for high performance flexible nickel-metal hydride batteries. Adv Energy Mater 8:1702467

    Article  CAS  Google Scholar 

  94. Yu L, Canfield NL, Chen S, Lee H, Ren X, Engelhard MH, Li Q, Liu J, Xu W, Zhang JG (2018) Enhanced stability of lithium metal anode by using a 3D porous nickel substrate. ChemElectroChem 5:761–769

    Article  CAS  Google Scholar 

  95. Pharr M, Zhao K, Wang X, Suo Z, Vlassak J (2012) Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. Nano Lett 12:5039–5047

    Article  CAS  Google Scholar 

  96. Jin Y, Kneusels NJH, Marbella LE, Castillo-Martínez E, Magusin PCMM, Weatherup RS, Jónsson E, Liu T, Paul S, Grey CP (2018) Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J Am Chem Soc 140:9854–9867

    Article  CAS  Google Scholar 

  97. Wang Z, Li F, Ergang N, Stein A (2008) Synthesis of monolithic 3D ordered macroporous carbon/nano-silicon composites by diiodosilane decomposition. Carbon 46:1702–1710

    Article  CAS  Google Scholar 

  98. Wang Z, Fierke MA, Stein A (2008) Porous carbon/tin (IV) oxide monoliths as anode for lithium-ion batteries. J Electrochem Soc 155:A658–A663

    Article  CAS  Google Scholar 

  99. Xu W, Canfield NL, Wang D, Xiao J, Nie Z, Zhang JG (2010) A three-dimensional macroporous Cu/SnO2 composite anode sheet prepared via a novel method. J Power Sources 195:7403–7408

    Article  CAS  Google Scholar 

  100. Vu A, Stein A (2011) Multiconstituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem Mater 23:3237–3245

    Article  CAS  Google Scholar 

  101. Liu J, Song K, van Aken PA, Maier J, Yu Y (2014) Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett 14:2597–2603

    Article  CAS  Google Scholar 

  102. Jiang S, Zhao B, Ran R, Cai R, Tadé MO, Shao Z (2014) A freestanding composite film electrode stacked from hierarchical electrospun SnO2 nanorods and graphene sheets for reversible lithium storage. RSC Adv 4:9367–9371

    Article  CAS  Google Scholar 

  103. Wang HG, Yuan S, Ma DL, Zhang XB, Yan JM (2015) Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci 8:1660–1681

    Article  CAS  Google Scholar 

  104. Lui G, Li G, Wang X, Jiang G, Lin E, Fowler M, Yu A, Chen Z (2016) Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries. Nano Energy 24:72–77

    Article  CAS  Google Scholar 

  105. Zhu C, Kopold P, van Aken PA, Maier J, Yu Y (2016) High power–high energy sodium battery based on threefold interpenetrating network. Adv Mater 28:2409–2416

    Article  CAS  Google Scholar 

  106. Ni J, Fu S, Wu C, Maier J, Yu Y, Li L (2016) Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv Mater 28:2259–2265

    Article  CAS  Google Scholar 

  107. Liu W, Song MS, Kong B, Cui Y (2016) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29:1603436

    Article  CAS  Google Scholar 

  108. Jung JW, Lee CL, Yu S, Kim ID (2016) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 4:703–750

    Article  CAS  Google Scholar 

  109. Lu X, Wang C, Favier F, Pinna N (2017) Electrospun nanomaterials supercapacitor electrodes: designed architectures and electrochemical performance. Adv Energy Mater 7:1601301

    Article  CAS  Google Scholar 

  110. Wei Q, Xiong F, Tan S, Huang L, Lan EH, Dunn B, Mai L (2017) Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv Mater 29:1602300

    Article  CAS  Google Scholar 

  111. Liang j, Jiang C, Wu W (2019) Toward fiber-, paper, and foam-based flexible solid-state supercapacitors: electrode materials and device designs. Nanoscale 11:7041–7061

    Article  Google Scholar 

  112. Jin T, Han Q, Jiao L (2019) Binder-free electrodes for advanced sodium-ion batteries. Adv Mater 32:1806304

    Article  CAS  Google Scholar 

  113. Spencer MA, Augustyn V (2019) Free-standing transition metal oxide electrode architectures for electrochemical energy storage. J Mater Sci 54:13045–13069

    Article  CAS  Google Scholar 

  114. Nakanishi K, Soga N (1991) Phase separation in gelling silica-organic polymer solution: systems containing poly(sodium styrenesulfonate). J Am Ceram Soc 74:2518–2530

    Article  CAS  Google Scholar 

  115. Volta A (1800) On the electricity excited by the mere contact of conducting substances of different kinds. Philos Trans R Soc Lond 90:403–431

    Google Scholar 

  116. Davy H (1808) On some new phenomena of chemical changes produced by electricity, particularly the decomposition of the fixed alkalies, and the exhibition of the new substances which constitute their bases; and on the general nature of alkaline bodies. Philos Trans R Soc Lond 98:1–45

    Google Scholar 

  117. Redfern B (1963) Bodies and shapes of carbonaceous materials and processes for their production. US Patent 3,109,712

  118. Lewis JC, Redfern B, Cowlard FC (1963) Vitreous carbon as a crucible material for semiconductors. Solid-State Electron 6:251–254

    Article  CAS  Google Scholar 

  119. Cowlard FC, Lewis JC (1967) Vitreous carbon – a new form of carbon. J Mater Sci 2:507–512

    Article  CAS  Google Scholar 

  120. Gassner Jr C (1887) Galvanic battery. US Patent 373,064

  121. Davy H (1810) On some new electrochemical researches, on various objects, particularly the metallic bodies, from the alkalies, and earths, and on some combinations of hydrogene. Philos Trans R Soc Lond 100:16–74

    Google Scholar 

  122. Rüdorff VW, Hofmann U (1938) Zeitschrift für anorganische und allgemeine chemie. Anorg Allg Chem 238:1–50

    Article  Google Scholar 

  123. Besenhard JO, Fritz HP (1983) The electrochemistry of black carbons. Angew Chem Int Ed 22:950–975

    Article  Google Scholar 

  124. Yazami R, Touzain PH (1983) A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sources 9:365–371

    Article  CAS  Google Scholar 

  125. Fong R, von Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137:2009–2013

    Article  CAS  Google Scholar 

  126. Doeff MM, Ma Y, Visco SJ, de Jonghe LC (1993) Electrochemical insertion of sodium into carbon. J Electrochem Soc 140:L169–L170

    Article  CAS  Google Scholar 

  127. Carlin RT, de Long HC, Fuller J, Trulove PC (1994) Dual intercalating molten electrolyte batteries. J Electrochem Soc 141:L73–L76

    Article  CAS  Google Scholar 

  128. Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273

    Article  CAS  Google Scholar 

  129. Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680

    Article  CAS  Google Scholar 

  130. Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3567

    Article  CAS  Google Scholar 

  131. Kubota K, Shimadzu S, Yabuuchi N, Tominaka S, Shiraishi S, Abreu-Sepulveda M, Manivannan A, Gotoh K, Fukunishi M, Dahbi M, Komaba S (2020) Chem Mater 32:2961–2977

    Article  CAS  Google Scholar 

  132. Wang G, Yu M, Feng X (2021) Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem Soc Rev 50:2388–2443

    Article  CAS  Google Scholar 

  133. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687

    Article  CAS  Google Scholar 

  134. Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z (2019) Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv Mater 31:1804799

    Article  CAS  Google Scholar 

  135. Wang J, Kong H, Zhang J, Hao Y, Shao Z, Ciucci F (2021) Carbon-based electrocatalysts for sustainable energy applications. Prog Mater Sci 116:100717

    Article  CAS  Google Scholar 

  136. Subramoney S (1998) Novel nanocarbons—structure, properties, and potential applications. Adv Mater 10:1157–1171

    Article  CAS  Google Scholar 

  137. Kauffman DR, Star A (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed 47:6550–6570

    Article  CAS  Google Scholar 

  138. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  139. Yavari F, Koratkar N (2012) Graphene-based chemical sensors. J Phys Chem Lett 3:1746–1753

    Article  CAS  Google Scholar 

  140. Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113:5782–5816

    Article  CAS  Google Scholar 

  141. Mao S, Lu G, Chen J (2014) Nanocarbon-based gas sensors: progress and challenges. J Mater Chem A 2:5573–5579

    Article  CAS  Google Scholar 

  142. Wang L, Pumera M (2016) Electrochemical catalysis at low dimensional carbons: graphene, carbon nanotubes and beyond—a review. Appl Mater Today 5:134–141

    Article  Google Scholar 

  143. Tang C, Titirici MM, Zhang Q (2017) A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites. J Energy Chem 26:1077–1093

    Article  Google Scholar 

  144. Li JC, Hou PX, Liu C (2017) Heteroatom-doped carbon nanotubes and graphene-based electrocatalysts for oxygen reduction reaction. Small 13:1702002

    Article  CAS  Google Scholar 

  145. Tian W, Zhang H, Duan X, Sun H, Shao G, Wang S (2020) Porous carbons: structure-oriented design and versatile applications. Adv Funct Mater 30:1909265

    Article  CAS  Google Scholar 

  146. Franklin RE (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Proc R Soc Lond A 209:196–218

    Article  CAS  Google Scholar 

  147. Jenkins GM, Kawamura K, Ban LL (1972) Formation and structure of polymeric carbons. Proc R Soc Lond A 327:501–517

    Article  Google Scholar 

  148. Robertson J (1986) Amorphous carbon. Adv Phys 35:317–374

    Article  CAS  Google Scholar 

  149. Oberlin A (1984) Carbonization and graphitization. Carbon 22:521–541

    Article  CAS  Google Scholar 

  150. Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, Sulphur and phosphorus for energy applications. Energy Environ Sci 6:2839–2855

    Article  CAS  Google Scholar 

  151. Ghosh S, Barg S, Jeong SM, Ostrikov KK (2020) Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv Energy Mater 10:2001239

    Article  CAS  Google Scholar 

  152. Titirici MM, White RJ, Brun N, Baudarin VL, Su DS, del Monte F, Clark JH, MacLachalan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44:250–290

    Article  CAS  Google Scholar 

  153. Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X (2017) J Mater Chem A 5:2411–2428

    Article  CAS  Google Scholar 

  154. Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen CM (2019) J Mater Chem A 7:16028–16045

    Article  CAS  Google Scholar 

  155. Dahn JR, Sleigh AK, Shi H, Reimers JN, Zhong Q, Way BM (1993) Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon. Electrochim Acta 38:1179–1191

    Article  CAS  Google Scholar 

  156. Mabuchi A, Tokumitsu K, Fujimoto H, Kasuh T (1995) Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures. J Electrochem Soc 142:1041–1046

    Article  CAS  Google Scholar 

  157. Tatsumi K, Iwashita N, Sakaebe H, Shioyama H, Higuchi S (1995) The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. J Electrochem Soc 142:716–720

    Article  CAS  Google Scholar 

  158. Xing W, Xue JS, Zheng T, Gibaud A, Dahn JR (1996) Correlation between lithium intercalation capacity and microstructure in hard carbons. J Electrochem Soc 143:3482–3491

    Article  CAS  Google Scholar 

  159. Gnanaraj JS, Levi MD, Levi E, Salitra G, Aurbach D, Fischer JE, Claye A (2001) J Electrochem Soc 148:A525–A536

    Article  CAS  Google Scholar 

  160. Stevens DA, Dahn JR (2001) The mechanism of lithium and sodium insertion in carbon materials. J Electrochem Soc 148:A803–A811

    Article  CAS  Google Scholar 

  161. Hasegawa G, Kanamori K, Kannari N, Ozaki J, Nakanishi K, Abe T (2015) Hard carbon anodes for Na-ion batteries: toward a practical use. ChemElectroChem 2:1917–1920

    Article  CAS  Google Scholar 

  162. Hasegawa G, Kanamori K, Kannari N, Ozaki J, Nakanishi K, Abe T (2016) Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. J Power Sources 318:41–48

    Article  CAS  Google Scholar 

  163. Zhang B, Ghimbeu CM, Laberty C, Vix-Guterl C, Tarascon JM (2016) Correlation between microstructure and Na storage behavior in hard carbon. Adv Energy Mater 6:1501588

    Article  CAS  Google Scholar 

  164. Kipling JJ, Sherwood JN, Shooter PV, Thompson NR (1964) Factors influencing the graphitization of polymer carbons. Carbon 1:315–320

    Article  CAS  Google Scholar 

  165. Fitzer E, Schäfter W (1970) The effect of crosslinking on the formation of glasslike carbons from thermosetting resins. Carbon 8:353–364

    Article  CAS  Google Scholar 

  166. Fitzer E, Köchling KH, Boehm HP, Marsh H (1995) Recommended terminology for the description of carbon as a solid. Pure Appl Chem 67:473–506

    Article  Google Scholar 

  167. Wohnsiedler HP (1953) Polymerization in melamine-formaldehyde molded resins. Ind Eng Chem 45:2307–2311

    Article  CAS  Google Scholar 

  168. von Ostrejko R (1903) Process of obtaining carbon of great decolorizing power. US Patent 739,104

  169. von Ostrejko R (1920) Process of producing decolorizing charcoal. US Patent 1,362,064

  170. Mühlen HJ, van Heek KH, Jüntgen H (1985) Kinetic studies of steam gasification of char in the presence of H2, CO2 and CO. Fuel 64:944–949

    Article  Google Scholar 

  171. Rodríguez-Reinoso F, Molina-Sabio M (1992) Activated carbon from lignosellulosic materials by chemical and/or physical activation: an overview. Carbon 30:1111–1118

    Article  Google Scholar 

  172. Ahmadpour A, Do DD (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon 34:471–479

    Article  CAS  Google Scholar 

  173. Wu FC, Tseng RL, Juang RS (2005) Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J Colloid Interface Sci 283:49–56

    Article  CAS  Google Scholar 

  174. Wennerberg AN, O’Grady TM (1978) Active carbon process and composition. US Patent 4,082,694

  175. Marsh H, Crawford D, O’Grady TM, Wennerberg A (1982) Carbon 20:419–426

    Article  CAS  Google Scholar 

  176. Laine J, Calafat A (1991) Factors affecting the preparation of activated carbons from coconut shell catalyzed by potassium. Carbon 29:949–953

    Article  CAS  Google Scholar 

  177. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  178. Jüntgen H (1977) New applications for carbonaceous adsorbents. Carbon 15:273–283

    Article  Google Scholar 

  179. Jüntgen H, Knoblauch K, Harder K (1981) Carbon molecular sieves: production from coal and application in gas separation. Fuel 60:817–822

    Article  Google Scholar 

  180. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7:1250–1280

    Article  CAS  Google Scholar 

  181. Pang J, John VT, Loy DA, Yang Z, Lu Y (2005) Hierarchical mesoporous carbon/silica nanocomposites from phenyl-bridged organosilane. Adv Mater 17:704–707

    Article  CAS  Google Scholar 

  182. Liu R, Shi Y, Wan Y, Meng Y, Zhang F, Gu D, Chen Z, Tu B, Zhao D (2006) Triconstituent co-assembly to ordered mesostructured polymer–silica and carbon–silica nanocomposites and large-pore mesoporous carbons with high surface area. J Am Chem Soc 128:11652–11662

    Article  CAS  Google Scholar 

  183. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Hierarchically porous carbon monoliths with high surface area from bridged polysilsesquioxane without thermal activation process. Chem Commun 46:8037–8039

    Article  CAS  Google Scholar 

  184. Hasegawa G, Kanamori K, Nakanishi K (2012) Pore properties of hierarchically porous carbon monoliths with high surface area obtained from bridged polysilsesquioxanes. Micropor Mesopor Mater 155:265–273

    Article  CAS  Google Scholar 

  185. Erb D, Lu K (2017) Additive and pyrolysis atmosphere effects on polysiloxane-derived porous SiOC ceramics. J Eur Ceram Soc 37:4547–4557

    Article  CAS  Google Scholar 

  186. Yang N, Lu K (2020) Porous and ultrahigh surface area SiOC ceramics based on perhydropolysilazane and polysiloxane. Micropor Mesopor Mater 306:110477

    Article  CAS  Google Scholar 

  187. Gogotsi YG, Yoshimura M (1994) Formation of carbon films on carbides under hydrothermal conditions. Nature 367:628–630

    Article  CAS  Google Scholar 

  188. Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW (2003) Nanoporous carbide-derived carbon with tunable pore size. Nat Mater 2:591–594

    Article  CAS  Google Scholar 

  189. Presser V, Heon M, Gogotsi Y (2011) Carbide-derived carbons—from porous networks to nanotubes and graphene. Adv Funct Mater 21:810–833

    Article  CAS  Google Scholar 

  190. Baekeland LH (1909) The synthesis constitution, and uses of bakelite. J Ind Eng Chem 1:149–161

    Article  CAS  Google Scholar 

  191. Baekeland LH (1909) On soluble, fusible, resinous condensation products of phenols and formaldehyde. J Ind Eng Chem 1:545–549

    Article  CAS  Google Scholar 

  192. Grenier-Loustalot MF, Larroque S, Grenier P, Leca JP, Bedel D (1994) Phenolic resins: 1. Mechanisms and kinetics of phenol and of the first polycondensates towards formaldehyde in solution. Polymer 35:3046–3054

    Article  CAS  Google Scholar 

  193. Grenier-Loustalot MF, Larroque S, Grande D, Grenier P, Bedel D (1996) Phenolic resins: 2. Influence of catalytic type on reaction mechanisms and kinetics. Polymer 37:1363–1369

    Article  CAS  Google Scholar 

  194. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227

    Article  CAS  Google Scholar 

  195. Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15:101–114

    Article  CAS  Google Scholar 

  196. ElKhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23:2887–2903

    Article  CAS  Google Scholar 

  197. Tennison SR (1998) Phenolic-resin-derived activated carbons. Appl Catal A 173:289–311

    Article  CAS  Google Scholar 

  198. Dankelman W, de Wit J (1977) Analytical methods for resorcinol-formaldehyde resins. Angew Makromol Chem 62:101–114

    Article  CAS  Google Scholar 

  199. Christiansen AW (2000) Resorcinol–formaldehyde reactions in dilute solution observed by carbon-13 NMR spectroscopy. J Appl Polym Sci 75:1760–1768

    Article  CAS  Google Scholar 

  200. Mulik S, Sotiriou-Leventis C, Leventis N (2007) Time-efficient acid-catalyzed synthesis of resorcinol–formaldehyde aerogels. Chem Mater 19:6138–6144

    Article  CAS  Google Scholar 

  201. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951

    Article  CAS  Google Scholar 

  202. Choma J, Jamioła D, Augustynek K, Marszewski M, Gao M, Jaroniec M (2012) New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres. J Mater Chem 22:12636–12642

    Article  CAS  Google Scholar 

  203. Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chem Commun 41:2125–2127

    Article  Google Scholar 

  204. Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A, Zhao D (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic–organic self-assembly. Chem Mater 18:4447–4464

    Article  CAS  Google Scholar 

  205. Wan Y, Shi Y, Zhao D (2008) Supramolecular aggregates as templates: ordered mesoporous polymers and carbons. Chem Mater 20:932–945

    Article  CAS  Google Scholar 

  206. Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717

    Article  CAS  Google Scholar 

  207. Ma TY, Liu L, Yuan ZY (2013) Direct synthesis of ordered mesoporous carbons. Chem Soc Rev 42:3977–4003

    Article  CAS  Google Scholar 

  208. Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667

    Article  CAS  Google Scholar 

  209. Antonietti M, Fechler N, Fellinger TP (2014) Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes. Chem Mater 26:196–210

    Article  CAS  Google Scholar 

  210. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  CAS  Google Scholar 

  211. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodispersed silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  212. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltrimethylammonium–kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63:988–992

    Article  CAS  Google Scholar 

  213. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  214. Huo Q, Margolese DI, Ciesla U, Feng P, Gler TE, Sleger P, Leon R, Petroff PM, Schüth F, Stucy GD (1994) Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368:317–321

    Article  CAS  Google Scholar 

  215. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  Google Scholar 

  216. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  217. Kakiuchi H (1969) Phenolics and amino resins. J Jpn Soc Colour Mater 42:336–342

    Article  Google Scholar 

  218. Hasegawa G, Kanamori K, Nakanishi K (2012) Facile preparation of macroporous graphitized carbon monoliths from iron-containing resorcinol–formaldehyde gels. Mater Lett 76:1–4

    Article  CAS  Google Scholar 

  219. Hasegawa G, Deguchi T, Kanamori K, Kobayashi Y, Kageyama H, Abe T, Nakanishi K (2015) High-level doping of nitrogen, phosphorus, and sulfur into activated carbon monoliths and their electrochemical capacitances. Chem Mater 27:4703–4712

    Article  CAS  Google Scholar 

  220. Kaji H, Nakanishi K, Soga N (1993) Polymerization-induced phase separation in silica sol–gel systems containing formamide. J Sol–Gel Sci Technol 1:35–46

    Article  CAS  Google Scholar 

  221. Sato Y, Nakanishi K, Hirao K, Jinnai H, Shibayama M, Melnichenko YB, Wignall GD (2001) Colloid Surf A 187–188:117–122

    Article  Google Scholar 

  222. Huesing N, Raab C, Torma V, Roig A, Peterlik H (2003) Periodicaly mesostructured silica monoliths from diol-modified silanes. Chem Mater 15:2690–2692

    Article  CAS  Google Scholar 

  223. Nakanishi K, Kobayashi Y, Amatani T, Hirao K, Kodaira T (2004) Spontaneous formation of hierarchical macro–mesoporous ethane–silica monolith. Chem Mater 16:3652–3658

    Article  CAS  Google Scholar 

  224. Amatani T, Nakanishi K, Hirao K, Kodaira T (2005) Chem Mater 17:2114–2119

    Article  CAS  Google Scholar 

  225. Brandhuber D, Peterlik H, Huesing N (2006) Facile self-assembly processes to phenylene-bridged silica monoliths with four levels of hierarchy. Small 2:503–506

    Article  CAS  Google Scholar 

  226. Nakanishi K, Amatani T, Yano S, Kodaira T (2008) Multiscale templating of siloxane gels via polymerization-induced phase separation. Chem Mater 20:1108–1115

    Article  CAS  Google Scholar 

  227. Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Abe T, Nakanishi K (2016) Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chem Mater 28:3944–3950

    Article  CAS  Google Scholar 

  228. Hasegawa G, Shimizu T, Kanamori K, Maeno A, Kaji H, Nakanishi K (2017) Highly flexible hybrid polymer aerogels and xerogels based on resorcinol–formaldehyde with enhanced elastic stiffness and recoverability: insights into the origin of their mechanical properties. Chem Mater 29:2122–2134

    Article  CAS  Google Scholar 

  229. Hasegawa G, Yano T, Akamatsu H, Hayashi K, Nakanishi K (2020) Variation of meso- and macroporous morphologies in resorcinol–formaldehyde (RF) gels tailored via a sol–gel process combined with soft-templating and phase separation. J Sol–Gel Sci Technol 95:801–812

    Article  CAS  Google Scholar 

  230. Putz F, Ludescher L, Elsaesser MS, Paris O, Hüsing N (2020) Hierarchically organized and anisotropic porous carbon monoliths. Chem Mater 32:3944–3951

    Article  CAS  Google Scholar 

  231. Huang Y, Cai H, Feng D, Gu D, Deng Y, Tu B, Wang H, Webley PA, Zhao D (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 2008:2641–2643

    Article  CAS  Google Scholar 

  232. Liang C, Dai S (2009) Dual phase separation for synthesis of bimodal meso/macroporous carbon monoliths. Chem Mater 21:2115–2124

    Article  CAS  Google Scholar 

  233. Weinberger M, Fröschl T, Puchegger S, Peterlik H, Hüsing N (2009) Organosilica monoliths with multiscale porosity: detailed investigation of the influence of the surfactant on structure formation. Silicon 1:19–28

    Article  CAS  Google Scholar 

  234. Franklin RE (1949) A study of the fine structure of carbonaceous solids by measurements of true and apparent densities. Part I coals. Trans Faraday Soc 45:274–286

    Article  CAS  Google Scholar 

  235. Franklin RE (1949) A study of the fine structure of carbonaceous solids by measurements of true and apparent densities. Part II carbonized coals. Trans Faraday Soc 45:668–682

    Article  CAS  Google Scholar 

  236. Acheson EG (1896) Manufacture of graphite. US Patent 568,323

  237. Marsh H, Warburton AP (1970) Catalysis of graphitisation. J Appl Chem 20:133–142

    Article  CAS  Google Scholar 

  238. Oberlin A, Rouchy JP (1971) Transformation des carbones non graphitables par traitement thermique en presence de fer. Carbon 9:39–46

    Article  CAS  Google Scholar 

  239. Oya A, Marsh H (1982) Phenomena of catalytic graphitization. J Mater Sci 17:309–322

    Article  CAS  Google Scholar 

  240. Yoshino A, Sanechika K, Nakajima T (1987) Secondary battery. US Patent 4,668,595

  241. Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ion- 69:173–183

    Article  CAS  Google Scholar 

  242. Yoshino A (2021) From polyacetylene to carbonaceous anodes. Nat Energy 6:449

    Article  CAS  Google Scholar 

  243. Okamoto Y (2014) Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C 118:16–19

    Article  CAS  Google Scholar 

  244. Stratford JM, Allan PK, Pecher O, Chater PA, Grey CP (2016) Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem Commun 52:12430–12433

    Article  CAS  Google Scholar 

  245. Morikawa Y, Nishimura S, Hashimoto R, Ohnuma M, Yamada A (2020) Mechanism of sodium storage in hard carbon: an X-ray scattering analysis. Adv Energy Mater 10:1903176

    Article  CAS  Google Scholar 

  246. Becker HI (1957) Low voltage electrolytic capacitor. US Patent 2,800,616

  247. Shi H (1996) Activated carbons and double layer capacitance. Electrochim Acta 41:1633–1639

    Article  CAS  Google Scholar 

  248. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46:1475–1488

    Article  CAS  Google Scholar 

  249. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251

    Article  CAS  Google Scholar 

  250. Shao H, Wu YC, Lin Z, Taberna PL, Simon P (2020) Nanoporous carbon for electrochemical capacitive energy storage. Chem Soc Rev 49:3005–3039

    Article  CAS  Google Scholar 

  251. Li W, Dahn JR, Wainwright DS (1994) Rechargeable lithium batteries with aqueous electrolytes. Science 264:1115–1118

    Article  CAS  Google Scholar 

  252. Wang Y, Yi J, Xia Y (2012) Recent progress in aqueous lithium-ion batteries. Adv Energy Mater 2:830–840

    Article  CAS  Google Scholar 

  253. Faraday M (1832) Experimental researches in electricity. Philos Trans R Soc Lond 122:125–162

    Google Scholar 

  254. Suo L, Borodin O, Gao T, Loguin M, Ho J, Fan X, Luo C, Wang C, Xu K (2015) “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350:938–943

    Article  CAS  Google Scholar 

  255. Yamada Y, Usui K, Sodeyama K, Ko S, Tateyama Y, Yamada A (2016) Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat Energy 1:16129

    Article  CAS  Google Scholar 

  256. Suo L, Borodin O, Sun W, Fan X, Yang C, Wang F, Gao T, Ma Z, Schroeder M, von Cresce A, Russell SM, Armand M, Angell A, Xu K, Wang C (2016) Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew Chem Int Ed 55:7136–7141

    Article  CAS  Google Scholar 

  257. Yang C, Chen J, Qing T, Fan X, Sun W, von Cresce A, Ding MS, Borodin O, Vatamanu J, Schroeder MA, Eidson N, Wang C, Xu K (2017) 4.0 V aqueous Li-ion batteries. Joule 1:122–132

    Article  CAS  Google Scholar 

  258. Borodin O, Self J, Persson KA, Wang C, Xu K (2020) Uncharted waters: super-concentrated electrolytes. Joule 4:69–100

    Article  CAS  Google Scholar 

  259. Li M, Wang C, Chen Z, Xu K, Lu J (2020) New concepts in electrolytes. Chem Rev 120:6783–6819

    Article  CAS  Google Scholar 

  260. Liu Y, He G, Jiang H, Parkin IP, Shearing PR, Brett DJL (2021) Cathode design for aqueous rechargeable multivalent ion batteries: challenges and opportunities. Adv Funct Mater 31:2010445

    Article  CAS  Google Scholar 

  261. Zhang H, Liu X, Li H, Hasa I, Passerini S (2021) Challenges and strategies for high-energy aqueous rechargeable batteries. Angew Chem Int Ed 60:598–616

    Article  CAS  Google Scholar 

  262. Yu M, Lu Y, Zheng H, Lu X (2018) New insights into the operating voltage of aqueous supercapacitors. Chem Eur J 24:3639–3649

    Article  CAS  Google Scholar 

  263. Bu X, Su L, Dou Q, Lei S, Yan X (2019) A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J Mater Chem A 7:7541–7547

    Article  CAS  Google Scholar 

  264. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv 1:3807–3835

    Article  Google Scholar 

  265. Bichat MP, Raymundo-Piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48:4351–4361

    Article  CAS  Google Scholar 

  266. Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5:5842–5850

    Article  CAS  Google Scholar 

  267. Gao Q, Demarconnay L, Raymundo-Piñero E, Béguin F (2012) Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ Sci 5:9611–9617

    Article  CAS  Google Scholar 

  268. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  Google Scholar 

  269. Huang J, Sumpter BG, Meunier V (2008) A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem Eur J 14:6614–6626

    Article  CAS  Google Scholar 

  270. Centeno TA, Stoeckli F (2006) The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons. Electrochim Acta 52:560–566

    Article  CAS  Google Scholar 

  271. Molina-Sabio M, González MT, Rodriguez-Reinoso F, Sepúlveda-Escribano A (1996) Effects of steam and carbon dioxide activation in the micropore size distribution of activated carbon. Carbon 34:505–509

    Article  CAS  Google Scholar 

  272. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2009) Fabrication of macroporous silicon carbide ceramics by intramolecular carbothermal reduction of phenyl-bridged polysilsesquioxane. J Mater Chem 19:7716–7720

    Article  CAS  Google Scholar 

  273. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) A new route to monolithic macroporous SiC/C composites from biphenylene-bridged polysilsesquioxane gels. Chem Mater 22:2541–2547

    Article  CAS  Google Scholar 

  274. Hasegawa G, Kanamori K, Nakanishi K, Abe T (2012) New insights into the relationship between micropore properties, ionic sizes, and electric double-layer capacitance in monolithic carbon electrodes. J Phys Chem C 116:26197–26203

    Article  CAS  Google Scholar 

  275. Marcus Y (1994) A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys Chem 51:111–127

    Article  CAS  Google Scholar 

  276. Endo M, Maeda T, Takeda T, Kim YJ, Koshiba K, Hara H, Dresselhaus MS (2001) Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J Electrochem Soc 148:A910–A914

    Article  CAS  Google Scholar 

  277. Rideal EK, Wright WM (1925) Low temperature oxidation at charcoal surfaces. Part I The behaviour of charcoal in the absence of promoters. J Chem Soc 127:1347–1357

    Article  CAS  Google Scholar 

  278. Rideal EK, Wright WM (1926) Low temperature oxidation at charcoal surfaces. Part II The behaviour of charcoal in the presence of promoters. J Chem Soc 128:1813–1821

    Article  Google Scholar 

  279. Pepper KW (1951) Sulphonated cross-linked polystyrene: a monofunctional cation-exchange resin. J Appl Chem 1:124–132

    Article  CAS  Google Scholar 

  280. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Fabrication of activated carbons with well-defined macropores derived from sulfonated poly(divinylbenzene) networks. Carbon 48:1757–1766

    Article  CAS  Google Scholar 

  281. Hasegawa G, Aoki M, Kanamori K, Nakanishi K, Hanada T, Tadanaga K (2011) Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-containing activated carbon with high surface area. J Mater Chem 21:2060–2063

    Article  CAS  Google Scholar 

  282. Kanamori K, Nakanishi K, Hanada T (2006) Rigid macroporous poly(divinylbenzene) monoliths with a well-defined bicontinuous morphology prepared by living radical polymerization. Adv Mater 18:2407–2411

    Article  CAS  Google Scholar 

  283. Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Pore formation in poly(divinylbenzene) networks derived from organotellulrium-mediated living radical polymerization. Macromolecules 42:1270–1277

    Article  CAS  Google Scholar 

  284. Nakagawa H, Watanabe K, Harada Y, Miura K (1999) Control of micropore formation in the carbonized ion exchange resin by utilizing pillar effect. Carbon 37:1455–1461

    Article  CAS  Google Scholar 

  285. Boehm HP, Mair G, Stoehr T, de Rincón AR, Tereczki B (1984) Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions. Fuel 63:1061–1063

    Article  CAS  Google Scholar 

  286. Jansen RJJ, van Bekkum H (1994) Amination and ammoxidation of activated carbons. Carbon 32:1507–1516

    Article  CAS  Google Scholar 

  287. Calahorro CV, Garcia AM, Garcia AB, Serrano VG (1990) Study of sulfur introduction in activated carbon. Carbon 28:321–335

    Article  Google Scholar 

  288. Adib F, Bagreev A, Bandosz TJ (2000) Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons. Langmuir 16:1980–1986

    Article  CAS  Google Scholar 

  289. Bagreev A, Menendez JA, Dukhno I, Tarasenko Y, Bandosz TJ (2004) Bitnuminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon 42:469–476

    Article  CAS  Google Scholar 

  290. Sohäfer H, Jacob H, Etzel K (1956) Über den Transport des Bodenkörpers im Temperaturgefälle mit Hilfe heterogener Gleichgewichte. Zeit anorg allg Chem 286:27–41

    Article  Google Scholar 

  291. Sohäfer H, Jacob H, Etzel K (1956) Die Verwendung der Zerfallsgleichgewichte der Eisen(II)- und Nickel(II)-halogenide zum Metalltransport im Temperaturgefälle. Zeit anorg allg Chem 286:42–55

    Article  Google Scholar 

  292. Fredenhagen K, Cadenbach G (1926) Die Bindung von Kalium durch Kohlenstoff. Zeit anorg allg Chem 158:249–263

    Article  CAS  Google Scholar 

  293. Fredenhagen K, Suck H (1929) Über die Bindung der Alkalimetalle durch Kohlenstoff II. Zeit anorg allg Chem 178:353–365

    Article  CAS  Google Scholar 

  294. Croft RC (1953) New molecular compounds of graphite. Nature 172:725–726

    Article  CAS  Google Scholar 

  295. Asher RC, Wilson SA (1958) Lamellar compound of sodium with graphite. Nature 181:409–410

    Article  CAS  Google Scholar 

  296. Rüdorff W (1959) Graphite intercalation compounds. Adv Inorg Chem Radiochem 1:223–266

    Article  Google Scholar 

  297. Guerard D, Herold A (1975) Intercalation of lithium into graphite and other carbons. Carbon 13:337–345

    Article  CAS  Google Scholar 

  298. Xu F, Xie Y, Zhang X, Zhang S, Liu X, Tian X (2004) Synergic nitrogen source route to inorganic fullerene-like boron nitride with vessel, hollow sphere, onion, and peanut nanostructures. Inorg Chem 43:822–829

    Article  CAS  Google Scholar 

  299. Xu F, Xie Y, Zhang X, Zhang S, Liu X, Xi W, Tian X (2004) Single-crystalline gallium nitride microspindles: synthesis, characterization, and thermal stability. Adv Funct Mater 14:464–470

    Article  CAS  Google Scholar 

  300. Vu A, Qian Y, Stein A (2012) Porous electrode materials for lithium-ion batteries – How to prepare them and what makes them special. Adv Energy Mater 2:1056–1085

    Article  CAS  Google Scholar 

  301. Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785

    Article  CAS  Google Scholar 

  302. Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Hybrid nanostructures for energy storage applications. Adv Mater 24:5045–5064

    Article  CAS  Google Scholar 

  303. Mao J, Iocozzia J, Huang J, Meng K, Lai Y, Lin Z (2018) Graphene aerogels for efficient energy storage and conversion. Energy Environ Sci 11:772–799

    Article  CAS  Google Scholar 

  304. Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Comp Sci Technol 64:155–170

    Article  CAS  Google Scholar 

  305. Colombo P, Mera G, Riedel R, Sorarù GD (2010) J Am Ceram Soc 93:1805–1837

    CAS  Google Scholar 

  306. Ainger FW, Herbert JM (1959) The preparation of phosphorous-nitrogen compounds as non-porous solids. Angew Chem 71:653

    Google Scholar 

  307. Popper P (1962) Bildung Nicht-oxydischer Deckschichten durch Pyrolyse. Angew Chem 74:879

    Article  Google Scholar 

  308. Yajima S, Hayashi J, Omori M, Okamura K (1976) Development of a silicon carbide fibre with high tensile strength. Nature 261:683–685

    Article  CAS  Google Scholar 

  309. Sharma RA, Seefurth RN (1976) Thermodynamic properties of the lithium-silicon system. J Electrochem Soc 123:1763–1768

    Article  CAS  Google Scholar 

  310. Boukamp BA, Lesh GC, Huggins RA (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128:725–729

    Article  CAS  Google Scholar 

  311. McDowell MT, Lee SW, Nix WD, Cui Y (2013) Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater 25:4966–4985

    Article  CAS  Google Scholar 

  312. Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353–358

    Article  CAS  Google Scholar 

  313. Zhang R, Du Y, Li D, Shen D, Yang J, Guo Z, Liu HK, Elzatahry AA, Zhao D (2014) Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. Adv Mater 26:6749–6755

    Article  CAS  Google Scholar 

  314. Hasegawa G, Kanamori K, Nakanishi K, Hayashi K (2019) Thermogravimetric evolved gas analysis and microscopic elemental mapping of the solid electrolyte interphase on silicon incorporated in free-standing porous carbon electrodes. Langmuir 35:12680–12688

    Article  CAS  Google Scholar 

  315. Zhang Q, Pan J, Lu P, Liu Z, Verbrugge MW, Sheldon BW, Cheng YT, Qi Y, Xiao X (2016) Synergetic effects of inorganic components in solid solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett 16:2011–2016

    Article  CAS  Google Scholar 

  316. Yoon T, Milien MS, Parimalam BS, Lucht BL (2017) Thermal decomposition of the solid electrolyte interphase (SEI) on silicon electrodes for lithium ion batteries. Chem Mater 29:3237–3245

    Article  CAS  Google Scholar 

  317. Thackeray MM (1995) Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J Electrochem Soc 142:2558–2563

    Article  CAS  Google Scholar 

  318. Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142:1431–1435

    Article  CAS  Google Scholar 

  319. Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahaian AJ, Goacher T, Thackeray MM (2001) Studies of Mg-substituted Li4−xMgxTi5O12 spinel electrodes (0 ≤ x ≤ ) for lithium batteries. J Electrochem Soc 148:A102–A104

    Article  CAS  Google Scholar 

  320. Kavan L, Procházka J, Spitler TM, Kalbáč M, Zukalová M, Drezen T, Grätzel M (2003) Li insertion into Li4Ti5O12 (spinel). J Electrochem Soc 150:A1000–A1007

    Article  CAS  Google Scholar 

  321. Scharner S, Weppner W, Schmid-Beurmann P (1999) Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. J Electrochem Soc 146:857–861

    Article  CAS  Google Scholar 

  322. Wagemaker M, Simon DR, Kelder EM, Schoonman J, Ringpfeil C, Haake U, Lützenkirchen-Hecht D, Frahm R, Mulder FM (2006) A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Adv Mater 18:3169–3173

    Article  CAS  Google Scholar 

  323. Song MS, Benayad A, Choi YM, Park KS (2012) Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity. Chem Commun 48:516–518

    Article  CAS  Google Scholar 

  324. Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Nakanishi K, Abe T (2015) Hierarchically porous Li4Ti5O12 anode materials for Li- and Na-ion batteries: effects of nanoarchitectural design and temperature dependence of the rate capability. Adv Energy Mater 5:1400730

    Article  CAS  Google Scholar 

  325. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Facile preparation of hierarchically porous TiO2 monoliths. J Am Ceram Soc 93:3110–3115

    Article  CAS  Google Scholar 

  326. Hasegawa G, Morisato K, Kanamori K, Nakanishi K (2011) New hierarchically porous titania monoliths for chromatographic separation media. J Sep Sci 34:3004–3010

    Article  CAS  Google Scholar 

  327. Hasegawa G, Kanamori K, Sugawara Y, Ikuhara Y, Nakanishi K (2012) Flower-like surface modification of titania materials by lithium hydroxide solution. J Colloid Interface Sci 374:291–296

    Article  CAS  Google Scholar 

  328. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  329. Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett 4:A170–A172

    Article  CAS  Google Scholar 

  330. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc 152:A607–A610

    Article  CAS  Google Scholar 

  331. Itoh H, Tabata T, Kokitsu M, Okazaki N, Imizu Y, Tada A (1993) Preparation of SiO2–Al2O3 gels from tetraethoxysilane and aluminum chloride. J Ceram Soc Jpn 101:1081–1083

    Article  CAS  Google Scholar 

  332. Gash AE, Tillotson TM, Satcher Jr JH, Hrubesh LW, Simpson RL (2001) New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids 285:22–28

    Article  CAS  Google Scholar 

  333. Gash AE, Tillotson TM, Satcher Jr JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol–gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13:999–1007

    Article  CAS  Google Scholar 

  334. Hasegawa G, Ishihara Y, Kanamori K, Miyazaki K, Yamada Y, Nakanishi K, Abe T (2011) Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem Mater 23:5208–5216

    Article  CAS  Google Scholar 

  335. Hasegawa G, Sannohe M, Ishihara Y, Kanamori K, Nakanishi K, Abe T (2013) New Li2FeSiO4–carbon monoliths with controlled macropores: effects of pore properties on electrode performance. Phys Chem Chem Phys 15:8736–8743

    Article  CAS  Google Scholar 

  336. Vajeeston P, Fjellvåg H (2017) First-principles study of structural stability, dynamical and mechanical properties of Li2FeSiO4 polymorphs. RSC Adv 7:16843–16853

    Article  CAS  Google Scholar 

  337. Weichert K, Sigle W, van Aken PA, Jamnik J, Zhu C, Amin R, Acartürk T, Starke U, Maier J (2012) Phase boundary propagation in large LiFePO4 single crystals on delithiation. J Am Chem Soc 134:2988–2992

    Article  CAS  Google Scholar 

  338. Yamanaka T, Abe T, Nishio K, Ogumi Z (2018) Diffusion of Li-deficient phases in large LiFePO4 single crystals during chemical delithiation. J Mater Chem A 6:11005–11011

    Article  CAS  Google Scholar 

  339. Kim IS, Kumta PN (2003) Hydrazide sol–gel synthesis of nanostructured titanium nitride: precursor chemistry and phase evolution. J Mater Chem 13:2028–2035

    Article  CAS  Google Scholar 

  340. Chen Y, Yi Y, Brennan JD, Brook MA (2006) Development of macroporous titania monoliths using a biocompatible method. Part 1: Mater Fab Charact 18:5326–5335

    CAS  Google Scholar 

  341. Hasegawa G, Sato T, Kanamori K, Nakano K, Yajima T, Kobayashi Y, Kageyama H, Abe T, Nakanishi K (2013) Hierarchically porous monoliths based on N-doped reduced titanium oxides and their electric and electrochemical properties. Chem Mater 25:3504–3512

    Article  CAS  Google Scholar 

  342. Hasegawa G, Sato T, Kanamori K, Sun CJ, Ren Y, Kobayashi Y, Kageyama H, Abe T, Nakanishi K (2015) Effects of calcination conditions on porous reduced titanium oxides and oxynitrides via a preceramic polymer route. Inorg Chem 54:2802–2808

    Article  CAS  Google Scholar 

  343. White GV, Mackenzie KJD, Brown IWM, Bowden ME, Johnston JH (1992) Carbothermal synthesis of titanium nitride. Part II the reaction sequence. J Mater Sci 27:4294–4299

    Article  CAS  Google Scholar 

  344. SEtoudeh N, Saidi A, Welham NJ (2005) Carbothermic reduction of anatase and rutile. J Alloy Compd 390:138–143

    Article  CAS  Google Scholar 

  345. Ioroi T, Senoh H, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K (2008) Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J Electrochem Soc 155:B321–B326

    Article  CAS  Google Scholar 

  346. Hasegawa G (2021) Porous reduced ceramic monoliths derived from silicon- and titanium-based preceramic polymer gels. J Ceram Soc Jpn 129:227–233

    Article  CAS  Google Scholar 

  347. Xiao W, Wang D (2014) The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem Soc Rev 43:3215–3228

    Article  CAS  Google Scholar 

  348. Nohira T, Yasuda K, Ito Y (2003) Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat Mater 2:397–401

    Article  CAS  Google Scholar 

  349. Yasuda K, Nohira T, Amezawa K, Ogata YH, Ito Y (2005) J Electrochem Soc 152:D69–D74

    Article  CAS  Google Scholar 

  350. Hasegawa G, Kanamori K, Nakanishi K (2022) Porous polymer-derived ceramics: flexible morphological and compositional controls through sol–gel chemistry. J Am Ceram Soc 105:5–34

    Article  CAS  Google Scholar 

  351. Dickens PG, Whittingham MS (1968) The tungsten bronzes and related compounds. Quart Rev Chem Soc 22:30–44

    Article  CAS  Google Scholar 

  352. Bartholomew RF, Frankl DR (1969) Electrical properties of some titanium oxides. Phys Rev 187:828–833

    Article  CAS  Google Scholar 

  353. Gellings PJ, Bouwmeester HJM (1992) Ion and mixed conducting oxides as catalysts. Catal Today 12:1–105

    Article  CAS  Google Scholar 

  354. Schwingenschlögl U, Eyert V (2004) The vanadium Magnéli phases VnO2n−1. Ann Phys 13:475–510

    Article  Google Scholar 

  355. Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24:2945–2986

    Article  CAS  Google Scholar 

  356. Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photon 6:809–817

    Article  CAS  Google Scholar 

  357. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294

    Article  CAS  Google Scholar 

  358. Patsalas P, Kalfagiannis N, Kassavetis S, Abadias G, Bellas DV, Lekka C, Lidorikis E (2018) Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mater Sci Eng R 123:1–55

    Article  Google Scholar 

  359. Barsoum M (2000) The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog Solid State Chem 28:201–281

    Article  CAS  Google Scholar 

  360. Eklund P, Beckers M, Jansson U, Högberg H, Hultman L (2010) The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films 518:1851–1878

    Article  CAS  Google Scholar 

  361. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005

    Article  CAS  Google Scholar 

  362. Adler D, Brooks H (1967) Theory of semiconductor-to-metal transitions. Phys Rev 155:826–840

    Article  CAS  Google Scholar 

  363. Rao CNR, Ramdas S, Loehman RE, Honig JM (1971) Semicondutor–metal transition in Ti3O5. J Solid State Chem 3:83–88

    Article  CAS  Google Scholar 

  364. Marezio M, McWhan DB, Dernier PD, Remeika JP (1973) Structural aspects of the metal–insulator transitions in Ti4O7. J Solid State Chem 6:213–221

    Article  CAS  Google Scholar 

  365. Houlihan JF, Mulay LN (1974) Electronic properties and defect structure of Ti4O7: correlation of magnetic susceptibility, electrical conductivity, and structural parameters via EPR spectroscopy. Phys Stat Sol 61:647–657

    Article  CAS  Google Scholar 

  366. Griffiths CH, Eastwood HK (1974) Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide. J Appl Phys 45:2201–2206

    Article  CAS  Google Scholar 

  367. Gervais F, Kress W (1985) Lattice dynamics of oxides with rutile structure and instabilities at the metal-semiconductor phase transitions of NbO2 and VO2. Phys Rev B 31:4809–4814

    Article  CAS  Google Scholar 

  368. Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039–1263

    Article  CAS  Google Scholar 

  369. Ohkoshi S, Tsunobuchi Y, Matsuda T, Hashimoto K, Namai A, Hakoe F, Tokoro H (2010) Synthesis of a metal oxide with a room-temperature photoreversible phase transition. Nat Chem 2:539–545

    Article  CAS  Google Scholar 

  370. Andersson S, Collén B, Kuylenstierna U, Magnéli A (1957) Phase analysis studies on the titanium-oxygen system. Acta Chem Scand 11:1641–1652

    Article  CAS  Google Scholar 

  371. le Roux H, Glasser L (1997) Transferable potentials for the Ti–O system. J Mater Chem 7:843–851

    Article  Google Scholar 

  372. Moriga T, Usaka O, Nakabayshi I, Kinouchi T, Kikkawa S, Kanamaru F (1995) Characterization of oxygen-deficient phases appearing in reduction of the perovskite-type LaNiO3 to La2Ni2O5. Solid State Ion- 79:252–255

    Article  CAS  Google Scholar 

  373. Hansteen OH, Fjellvåg H, Hauback BC (1998) Crystal structure, thermal and magnetic properties of La3Co3O8. Phase relations for LaCoO3−δ (0.00 ≤ δ ≤ 0.50) at 673 K. J Mater Chem 8:2081–2088

    Article  CAS  Google Scholar 

  374. Hayward MA, Green MA, Rosseinsky MJ, Sloan J (1999) Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J Am Chem Soc 121:8843–8854

    Article  CAS  Google Scholar 

  375. Hayward MA, Cussen EJ, Claridge JB, Bieringer M, Rosseinsky MJ, Kiely CJ, Blundell SJ, Marshall IM, Pratt FL (2002) The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7. Science 295:1882–1884

    Article  CAS  Google Scholar 

  376. Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C, Paulus W (2007) Infinite-layer iron oxide with a square-planar coordination. Nature 450:1062–1065

    Article  CAS  Google Scholar 

  377. Kitada A, Hasegawa G, Kobayashi Y, Miyazaki K, Abe T, Kanamori K, Nakanishi K, Kageyama H (2013) Hierarchically porous monoliths of oxygen-deficient anatase TiO2−x with electronic conductivity. RSC Adv 3:7205–7208

    Article  CAS  Google Scholar 

  378. Kitada A, Hasegawa G, Kobayashi Y, Kanamori K, Nakanishi K, Kageyama H (2012) Preparation of macroporous monoliths of conductive titanium oxides TinO2n−1 (n = 2,3,4,6). J Am Chem Soc 134:10894–10898

    Article  CAS  Google Scholar 

  379. Hasegawa G, Kitada A, Kawasaki S, Kanamori K, Nakanishi K, Kobayashi Y, Kageyama H, Abe T (2015) Impact of electrolyte on pseudocapacitance and stability of porous titanium nitride (TiN) monolithic electrode. J Electrochem Soc 162:A77–A85

    Article  CAS  Google Scholar 

  380. Spengler W, Kaiser R, Christensen AN, Müller-Vogt G (1978) Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN. Phys Rev B 17:1095–1101

    Article  CAS  Google Scholar 

  381. Choi D, Kumta PN (2006) Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors. J Electrochem Soc 153:A2298–A2303

    Article  CAS  Google Scholar 

  382. Dong S, Chen X, Gu L, Zhou X, Xu H, Wang H, Liu Z, Han P, Yao J, Wang L, Cui G, Chen L (2011) Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. ACS Appl Mater Interfaces 3:93–98

    Article  CAS  Google Scholar 

  383. Lu X, Wang G, Zhai T, Yu M, Xie S, Ling Y, Liang C, Tong Y, Li Y (2012) Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett 12:5376–5381

    Article  CAS  Google Scholar 

  384. Erdemir A, Carter WB, Hochman RF (1985) A study of the corrosion behavior of TiN films. Mater Sci Eng 69:89–93

    Article  CAS  Google Scholar 

  385. Windisch Jr. CF, Virden JW, Elder SH, Liu J, Engelhard MH (1988) Electrochemistry of TiN in 6 M KOH solution. J Electrochem Soc 145:1211–1218

    Article  Google Scholar 

  386. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem 68:3498–3501

    Article  CAS  Google Scholar 

  387. Nakanishi K, Minakuchi H, Soga N, Tanaka N (1997) Double pore silica gel monolith applied to liquid chromatography. J Sol–Gel Sci Technol 8:547–552

    Article  CAS  Google Scholar 

  388. Nakanishi K, Tanaka N (2007) Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res 40:863–873

    Article  CAS  Google Scholar 

  389. Shintani Y, Zhou X, Furuno M, Minakuchi H, Nakanishi K (2003) Monolithic silica column for in-tube solid-phase microextraction coupled to high-performance liquid chromatography. J Chromatogr A 985:351–357

    Article  CAS  Google Scholar 

  390. Ota S, Miyazaki S, Matsuoka H, Morisato K, Shintani Y, Nakanishi K (2007) High-throughput protein digestion by trypsin-immobilized monolithic silica with pipette-tip formula. J Biochem Biophys Methods 70:57–62

    Article  CAS  Google Scholar 

  391. Ostwald W (1894) Die Wissenshaftliche Electrochemie der Gegenwart und die Technische der Zukunft. Zeit Elektrotech Electrochem 1:122–125

    Article  Google Scholar 

  392. Bacon FT, Fry TM (1973) The development and practical application of fuel cells. Proc R Soc Lond A 334:427–452

    Article  CAS  Google Scholar 

  393. Antolini E, Gonzalez ER (2009) Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ion- 180:746–763

    Article  CAS  Google Scholar 

  394. Wang YJ, Wilkinson DP, Zhang J (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111:7625–7651

    Article  CAS  Google Scholar 

  395. Borchers W (1896) Process of transoforming chemical energy of fuel into electrical energy. US Patent 567,959

  396. Thaller LH (1976) Electrically rechargeable redox flow cell. US Patent 3,996,064

  397. de León CP, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC (2006) Redox flow cells for energy conversion. J Power Sources 160:716–732

    Article  CAS  Google Scholar 

  398. Arenas LF, de León CP, Walsh FC (2017) Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. J Energy Storage 11:119–153

    Article  Google Scholar 

  399. Trost BM (1991) The atom economy—a search for synthetic efficiency. Science 254:1471–1477

    Article  CAS  Google Scholar 

  400. Couper AM, Pletcher D, Walsh FC (1990) Electrode materials for electrosynthesis. Chem Rev 90:837–865

    Article  CAS  Google Scholar 

  401. Heard DM, Lennox AJJ (2020) Electrode materials in modern organic electrochemistry. Angew Chem Int Ed 59:18866–18884

    Article  CAS  Google Scholar 

  402. Trellu C, Chaplin BP, Coetsier C, Esmilaire R, Cerneaux S, Causserand C, Cretin M (2018) Electro-oxidation of organic pollutants by reactive electrochemical membranes. Chemosphere 208:159–175

    Article  CAS  Google Scholar 

  403. Ergang NS, Lytle JC, Lee KT, Oh SM, Smyrl WH, Stein A (2006) Photonic crystal structures as a basis for a three-dimensionally interpenetrating electrochemical-cell system. Adv Mater 18:1750–1753

    Article  CAS  Google Scholar 

  404. Roberts M, Johns P, Owen J, Brandell D, Edstrom K, Enany GE, Guery C, Golodnitsky D, Lacey M, Lecoeur C, Mazor H, Peled E, Perre E, Shaijumon MM, Simon P, Taberna PL (2011) 3D lithium ion batteries – from fundamentals to fabrication. J Mater Chem 21:9876–9890

    Article  CAS  Google Scholar 

  405. Talin AA, Ruzmetov D, Kolmakov A, McKelvey K, Ware N, Gabaly FE, Dunn B, White HS (2016) Fabrication, testing, and simulation of all-solid-state three-dimensional Li-ion batteries. ACS Appl Mater Interfaces 8:32385–32391

    Article  CAS  Google Scholar 

  406. Pearse A, Schmitt T, Sahadeo E, Stewart DM, Kozen A, Gerasopoulos K, Talin AA, Lee SB, Rubloff GW, Gregorczyk KE (2018) Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano 12:4286–4294

    Article  CAS  Google Scholar 

  407. Aschby DS, Choi CS, Edwards MA, Talin AA, White HS, Dunn BS (2020) High-performance solid-state lithium-ion battery with mixed 2D and 3D electrodes. ACS Appl Energy Mater 3:8402–8409

    Article  CAS  Google Scholar 

  408. Jetybayeva A, Uzakbaiuly B, Mukanova A, Myung ST, Bakenov Z (2021) Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries. J Mater Chem A 9:15140–15178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is indebted to Profs. Kazuki Nakanishi, Kazuyoshi Kanamori and Takeshi Abe (Kyoto University) for their continuous support and fruitful discussions. Special thanks go to all coworkers, collaborators and students for their contributions to the author’s research quoted here. The author also wishes to acknowledge the financial supports such as Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and JST FOREST Program (Grant Number JPMJFR2021, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Hasegawa.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, G. Free-standing and binder-free porous monolithic electrodes prepared via sol–gel processes. J Sol-Gel Sci Technol 103, 637–679 (2022). https://doi.org/10.1007/s10971-022-05862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05862-5

Keywords

Navigation