Skip to main content
Log in

Thermal stability of phosphinated diethyl tartrate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organohalogen flame retardants, particularly brominated aromatics, are popular, effective, low cost, and widely used in the plastics industry. However, an increasing concern about persistence in the environment and potential negative health effects of these materials has generated intense interest in the development of alternatives. Ideally, these should have all the positive attributes of the materials that will be replaced. In addition, it is desirable that the new materials be as “green” as possible, e.g., based on renewable resources and be degradable to nontoxic products in the environment. A series of new, non-halogenated flame retardants based on tartaric acid is being developed. Tartaric acid is a by-product of the wine industry and is readily available locally on an annual basis (Michigan is the thirteenth largest producer of wine in the U.S.). It can be readily converted to the corresponding diethyl ester. This ester may serve as the base for the development of a series of new, non-halogenated flame-retarding agents. The presence of the reactive hydroxyl groups allows the introduction of a variety of phosphorus-containing moieties. For example, treatment of diethyl tartrate with diphenylphosphinyl chloride generates diethyl 2,3-di(diphenylphosphinato)-1,4-butanedioate. This material may serve as a monomer for the preparation of various phosphorus-containing polymers and oligomers via step-growth transesterification. The thermal stability of this compound has been assessed by thermogravimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Troitzsch J. Plastics flammability handbook: principles, regulations, testing and approval. 3rd ed. Cincinnati: Hanser Gardner Publications; 2004.

    Google Scholar 

  2. Georlette P, Simons J, Costa L. Halogen-containing fire-retardant compounds. In: Grand AF, Wilkie CW, editors. Fire retardancy of polymeric materials. New York: Marcel Dekker Inc.; 2000. pp. 245–84.

    Google Scholar 

  3. Gann RC. Flame retardants: overview. In: Kroschwitz J, Howe-Grant M, editors. Kirk-Othemer encyclopedia of chemical technology, vol. 10. New York: Wiley; 1993. pp. 930–936.

  4. Green J. A review of phosphorus-containing flame retardants. J Fire Sci. 1992;10(6):470–87.

    Article  CAS  Google Scholar 

  5. Weil ED. Phosphorus-based flame retardants. In: Engel RE, editor. Handbook of organophosphorus chemistry. New York: Marcel Dekker; 1992.

    Google Scholar 

  6. Weil ED, Levchik SV, Ravey M, Zhu WM. A survey of recent progress in phosphorus-based flame retardants and some mode of action studies. Phosphorus Sulfur Silicon Relat Elem. 1999;144–146:17–20.

    Google Scholar 

  7. Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27(8):1661–712.

    Article  CAS  Google Scholar 

  8. Davis J. The technology of halogen-free flame retardant additives for polymeric systems. Eng Plast. 1996;9(5):403–19.

    Google Scholar 

  9. Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA. Levels and trends of brominated flame retardants in the European environment. Chemosphere. 2006;64:187–208.

    Article  CAS  Google Scholar 

  10. de Wit C, Alace M, Muir D. Levels and trends of brominated flame retardants in the Arctic. Chemosphere. 2006;64:209–33.

    Article  Google Scholar 

  11. Pepich BV, Prakash B, Domino MM, Dattilio TA. Development of U.S. EPA method 527 for the analysis of selected pesticides and flame retardants in the UCMR survey. Eviron Sci Technol 2005;39(13):4996–5004 (references cited therein).

    Google Scholar 

  12. Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? Environ Health Perspect. 2004;112(1):9–17.

    Article  CAS  Google Scholar 

  13. Alaee M, Wenning RJ. The significance of brominated flame retardants in the environment: current understanding, issues and challenges. Chemosphere. 2002;46:579–82.

    Article  CAS  Google Scholar 

  14. Wheler EK, Hovander L, Bergmen A. New organohalogens in human plasma. Identification and quantification. Organohalog Compds. 1997;33:420–5.

    Google Scholar 

  15. Artner J, Ciesielski M, Walter O, Doring M, Perez RM, Sandler JKW, Altstadt V, Schartel B. A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems. Macromol Mater Eng. 2008;293(6):503–14.

    Article  CAS  Google Scholar 

  16. Ciesielski M, Schafer A, Doring M. Novel efficient DOPO-based flame-retardants for PWB relevant epoxy resins with high glass transition temperatures. Polym Adv Technol. 2008;19(6):507–15.

    Article  CAS  Google Scholar 

  17. Schartel B, Balabanovich AI, Braun U, Knoll U, Artner J, Ciesielski M, Doring M, Perez RM, Sandler JKW, Altstadt V, Hoffman T, Pospiech D. Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives. J Appl Polym Sci. 2007;104(4):2260–9.

    Article  CAS  Google Scholar 

  18. Perez RM, Sandler JKW, Altstadt V, Hoffman T, Pospiech D, Artner J, Ciesielski M, Doring M, Balabanovich AI, Knoll U, Braun U, Schartel B. Novel phosphorus-containing hardeners with tailored chemical structures for epoxy resins: synthesis and cured resin properties. J Appl Polym Sci. 2007;105(5):2744–59.

    Article  CAS  Google Scholar 

  19. Perez RM, Sandler JKW, Altstadt V, Hoffman T, Pospiech D, Artner J, Ciesielski M, Doring M, Balabanovich AI, Schartel B. Effective halogen-free flame retardancy for a monocomponent polyfunctional epoxy using an oligomeric organophosphorus compound. J Mater Sci. 2006;41(24):8347–51.

    Article  CAS  Google Scholar 

  20. Perez RM, Sandler JKW, Altstadt V, Hoffman T, Pospiech D, Artner J, Ciesielski M, Doring M, Braun U, Knoll U, Schartel B. Effective halogen-free flame retardants for carbon fiber-reinforced epoxy composites. J Mater Sci. 2006;41(15):4981–4.

    Article  CAS  Google Scholar 

  21. Perez RM, Sandler JKW, Altstadt V, Hoffman T, Pospiech D, Ciesielski M, Doring M. Effect of DOP-based compounds on fire retardancy, thermal stability, and mechanical properties of DGEBA cured with 4, 4′-DDS. J Mater Sci. 2006;41(2):341–53.

    Article  CAS  Google Scholar 

  22. Amerine MA, Berg HW, Cruess WV. The technology of wine making. Westport: The Avi Publishing Company Inc.; 1972.

    Google Scholar 

  23. Austin C. The science of wine. London: University of London Press Ltd.; 1968.

    Google Scholar 

  24. Pinney T. A history of wine in America: from prohibition to the present. Berkeley: University of California Press; 2005.

    Google Scholar 

  25. Wine regions of the United States. http://www.wineforeveryone.com/wine_regions_united_states.html. Accessed 11 July 2009.

  26. Michigan wine and grape council. http://www.michiganwines.com/page.php?menu=maps. Accessed 11 July 2009.

  27. Rivas B, Torrado A, Moldes AB, Dominguez JM. Tartaric acid recovery from distilled lees and use of the residual solid as an economic nutrient for Lactobacillus. J Agric Food Chem. 2006;54(20):7904–11.

    Article  CAS  Google Scholar 

  28. Versari A, Castellari M, Spinabelli U, Galassi S. Recovery of tartaric acid from industrial enological wastes. J Chem Technol Biotechnol. 2001;76(5):485–8.

    Article  CAS  Google Scholar 

  29. Brown EM, Henriques VD. Vinification in California wineries. Ind Eng Chem. 1935;27:1235–40.

    Article  CAS  Google Scholar 

  30. Marsh GL, Joslyn MA. Effect of temperature on the precipitation rate of cream of tartar from wine. Ind Eng Chem. 1935;27:1252–7.

    Article  CAS  Google Scholar 

  31. Zhou X, Lin W-J, Ye J-L, Huang P-Q. A versatile approach to pyrrolidine azasugars and homoazasugars based on a highly diastereoselective reductive benzyloxymethylation of protected tartarimide. Tetrahedron. 2007;63(7):6346–57.

    Article  CAS  Google Scholar 

  32. Lemieux RU, Howard J. The O-inside conformation of 1,3:2,4-di-O-methylene-l-threitol. Can J Chem. 1963;41:393–8.

    Article  CAS  Google Scholar 

  33. Baolina TV, Groyvnova IB, Petrovskii PV, Matroscov EI, Groyunova EI, Nifantev EE. One-pot synthesis of N-diphenylphosphorylureas. Doklady Chem. 2006;409:129–32.

    Article  Google Scholar 

  34. Tyssee DA, Bausher LP, Haake P. Displacement at phosphorus by a mechanism with A1 character. Acid-catalyzed hydrolysis of phosphinanilides. J Am Chem Soc. 1978;95(24):8066–72.

    Article  Google Scholar 

  35. Dhawan BD, Redmore D. o-Hydroxyaryl diphosphonic acids. J Org Chem. 1984;49(21):4018–21.

    Article  CAS  Google Scholar 

  36. Annakutty KS, Kishore K. Flame retardant polyphosphate esters. 2. Condensation polymers of bisphenol A with alkyl phosphorodichloridates: synthesis, characterization and thermal studies. Polymer. 1988;29(4):762–4.

    Article  Google Scholar 

  37. Liu Y-L, Hsiue G-H, Chiu Y-S, Jeng R-J, Ma C. Synthesis and flame-retardant properties of phosphorus-containing polymers based on poly(4-hydroxystyrene). J Appl Polym Sci. 1996;59(10):1619–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Howell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, B.A., Carter, K.E. Thermal stability of phosphinated diethyl tartrate. J Therm Anal Calorim 102, 493–498 (2010). https://doi.org/10.1007/s10973-010-0875-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0875-9

Keywords

Navigation