Skip to main content
Log in

Preparation and characterization of the bacterial cellulose/polyurethane nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New nanocomposites based on bacterial cellulose nanofibers (BCN) and polyurethane (PU) prepolymer were prepared and characterized by SEM, FT-IR, XRD, and TG/DTG analyses. An improvement of the interface reaction between the BCN and the PU prepolymer was obtained by a solvent exchange process. FT-IR results showed the main urethane band at 2,270 cm−1 to PU prepolymer; however, in nanocomposites new bands appear as disubstituted urea at 1,650 and 1,550 cm−1. In addition, the observed decrease in the intensity of the hydroxyl band (3,500 cm−1) suggests an interaction between BCN hydroxyls and NCO-free groups. The nanocomposites presented a non-crystalline character, significant thermal stability (up to 230 °C) and low water absorption when compared to pristine BCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Czaja WK, Young DJ, Kawecki M, Brown RM. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007;8:1–12.

    Article  CAS  Google Scholar 

  2. Matthews FL, Rawlings RD. Composite materials: engineering and science. London: Chapman & Hall; 1994.

    Google Scholar 

  3. Yano H, Sugiyama J, Nakagaito AN, Nogi M, et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater. 2005;17:153–5.

    Article  CAS  Google Scholar 

  4. Gatenholm P, Klemm D. Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 2010;35:208–13.

    Article  CAS  Google Scholar 

  5. Klemm D, Schumann D, Udhardt U, Marsch S. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci. 2001;26:1561–603.

    Article  CAS  Google Scholar 

  6. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit. 2005;44:3358–93.

    Article  CAS  Google Scholar 

  7. Pinto ERP. Estudo do sistema Celulose Bacteriana-Poliuretano para a produção de novos compósitos. Master Science Dissertation. Universidade Estadual Paulista, Instituto de Química, Brazil. 2007;1–170.

  8. Nogi M, Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater. 2008;20:1849–52.

    Article  CAS  Google Scholar 

  9. Hu L, Wan YZ, He F, Luo HL, et al. Effect of coupling treatment on mechanical properties of bacterial cellulose nanofibre-reinforced UPR ecocomposites. Mater Lett. 2009;63:1952–4.

    Article  CAS  Google Scholar 

  10. Maria LCS, Santos ALC, Oliveira PC, Valle ASS, et al. Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polimeros. 2010;20:72–7.

    Article  CAS  Google Scholar 

  11. Vilar W. Química e Tecnologia dos poliuretanos. Rio de Janeiro: Vilar Consultoria; 2004.

    Google Scholar 

  12. Ionescu M, Sinharoy S, Petrovic ZS. Polyacetal polyols for polyurethanes. J Polym Environ. 2009;17:123–30.

    Article  CAS  Google Scholar 

  13. Palaskar DV, Boyer A, Cloutet E, Alfos C, Cramail H. Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach. Biomacromolecules. 2010;11:1202–11.

    Article  CAS  Google Scholar 

  14. Petrovic ZS, Cvetkovic I, Hong D, Wan XM, et al. Vegetable oil-based triols from hydroformylated fatty acids and polyurethane elastomers. Eur J Lipid Sci Technol. 2010;112:97–102.

    Article  CAS  Google Scholar 

  15. Bledzki AK, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;24:221–74.

    Article  CAS  Google Scholar 

  16. Qiu WL, Zhang FR, Endo T, Hirotsu T. Isocyanate as a compatibilizing agent on the properties of highly crystalline cellulose/polypropylene composites. J Mater Sci. 2005;40:3607–14.

    Article  CAS  Google Scholar 

  17. Botaro VR, Gandini A, Belgacem MN. Heterogeneous chemical modification of cellulose for composite materials. J Thermoplast Compos Mater. 2005;18:107–17.

    Article  CAS  Google Scholar 

  18. Qiu WL, Endo T, Hirotsu T. Interfacial interactions of a novel mechanochemical composite of cellulose with maleated polypropylene. J Appl Polym Sci. 2004;94:1326–35.

    Article  CAS  Google Scholar 

  19. Wu QJ, Henriksson M, Liu X, Berglund LA. A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules. 2007;8:3687–92.

    Article  CAS  Google Scholar 

  20. Seydibeyoglu MO, Oksman K. Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol. 2008;68:908–14.

    Article  Google Scholar 

  21. Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P. Cellulose-based aerogels. Polymer. 2006;47:7636–45.

    Article  CAS  Google Scholar 

  22. Nakagaito AN, Nogi M, Yano H. Displays from transparent film of natural nanofibers. MRS Bull. 2010;35:214–8.

    Article  CAS  Google Scholar 

  23. Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJL. Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym. 2011;83:1279–84.

    Article  CAS  Google Scholar 

  24. ASTM. D2572–03: standard test method for isocyanate groups in urethane materials or prepolymers. West Conshohocken: Pennsylvania; 2003.

    Google Scholar 

  25. Mantanis GI, Young RA, Rowell RM. Swelling of compressed cellulose fiber webs in organic liquids. Cellulose. 1995;2:1–22.

    CAS  Google Scholar 

  26. Kunzek H, Muller S, Vetter S, Godeck R. The significance of physico chemical properties of plant cell wall materials for the development of innovative food products. Eur Food Res Technol. 2002;214:361–76.

    Article  CAS  Google Scholar 

  27. Lee KY, Bismarck A. Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose. 2012;19:891–900.

    Article  CAS  Google Scholar 

  28. Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K. Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose. 2010;17:299–307.

    Article  CAS  Google Scholar 

  29. Matsuda T, Kurohane K, Imai Y. Di-(2-ethylhexyl) phthalate enhances skin sensitization to isocyanate haptens in mice. Toxicol Lett. 2010;192:97–100.

    Article  CAS  Google Scholar 

  30. Barud HS, de Araujo AM, Santos DB, de Assuncao RMN, et al. Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta. 2008;471:61–9.

    Article  CAS  Google Scholar 

  31. Silverstein RM, Bassler GC, Morrill TC. Identificação espectrométrica de compostos orgânicos. Rio de Janeiro: LTC; 1994.

    Google Scholar 

  32. Coleman MM, Lee KH, Skrovanek DJ, Painter PC. Hydrogen-bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules. 1986;19:2149–57.

    Article  CAS  Google Scholar 

  33. Rivera-Armenta JL, Heinze T, Mendoza-Martinez AM. New polyurethane foams modified with cellulose derivatives. Eur Polym J. 2004;40:2803–12.

    Article  CAS  Google Scholar 

  34. Osullivan AC. Cellulose: the structure slowly unravels. Cellulose. 1997;4:173–207.

    Article  CAS  Google Scholar 

  35. Wada M, Okano T. Localization of I-alpha and I-beta phases in algal cellulose revealed by acid treatments. Cellulose. 2001;8:183–8.

    Article  CAS  Google Scholar 

  36. Cao Q, Liu PS. Structure and mechanical properties of shape memory polyurethane based on hyperbranched polyesters. Polym Bull. 2006;57:889–99.

    Article  CAS  Google Scholar 

  37. Barud HS, Ribeiro CA, Crespi MS, Martines MAU, et al. Thermal characterization of bacterial cellulose-phosphate composite membranes. J Therm Anal Calorim. 2007;87:815–8.

    Article  CAS  Google Scholar 

  38. Husic S, Javni I, Petrovic ZS. Thermal and mechanical properties of glass reinforced soy-based polyurethane composites. Compos Sci Technol. 2005;65:19–25.

    Article  CAS  Google Scholar 

  39. Javni I, Petrovic ZS, Guo A, Fuller R. Thermal stability of polyurethanes based on vegetable oils. J Appl Polym Sci. 2000;77:1723–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Brazilian agencies “Fundação de amparo a pesquisa do estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)” and “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” and technical support from Electron Microscopy Laboratory/National Synchrotron Light Laboratory (LME/LNLS) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine R. P. Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, E.R.P., Barud, H.S., Polito, W.L. et al. Preparation and characterization of the bacterial cellulose/polyurethane nanocomposites. J Therm Anal Calorim 114, 549–555 (2013). https://doi.org/10.1007/s10973-013-3001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3001-y

Keywords

Navigation