Skip to main content
Log in

Inclusion complex of (−)-linalool and β-cyclodextrin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

(−)-Linalool is a monoterpene alcohol which is present in the essential oils of several aromatic plants. Recent studies suggest that (−)-linalool has antimicrobial, anti-inflammatory, anticancer, antioxidant, and antinociceptive properties in different animal models. The aim of this study was to prepare and characterize inclusion complexes of (−)-linalool with β-cyclodextrin (β-CD). Equimolar binary (−)-linalool/β-CD systems were prepared by physical mixture, paste (PM), and slurry methods (SC) and characterized by differential scanning calorimetry, thermogravimetric analysis, FT-IR spectroscopy, X-ray diffractometry, Karl Fisher titration, and scanning electron microscopy. Thermal characterization indicates the occurrence of complexation, mainly in paste complexes, which is present in the interval from 140 to 280 °C a gradual mass loss (4.6 %), probably related to (−)-linalool loss. FT-IR spectra showed changes that may be related to the formation of intermolecular hydrogen bonds between (−)-linalool and β-CD. The new solid-phase formed using the PM and SC methods, had a crystal structure which was different from the original morphology of β-CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Venâncio AM, Marchioro M, Estavam CS, Melo MS, Santana MT, Onofre ASC, Guimarães AG, Oliveira MGB, Alves PB, Pimentel HC, Quintans-Júnior LJ. Ocimum basilicum (Lamiaceae) leaf essential oil and (−)-linalool reduce orofacial nociception in rodents—a behavioral and electrophysiological approach. Braz J Pharmacogn. 2011;21:1043–51.

    Google Scholar 

  2. Letizia CS, Cocchiara J, Lalko J, Api AM. Fragrance material review on linalool. Food Chem Toxicol. 2003;41:943–64.

    Article  CAS  Google Scholar 

  3. Kamatou GPP, Viljoen AM. Linalool—a review of a biologically active compound of commercial importance. Natural Prod Commun. 2008;3(7):1183–92.

    CAS  Google Scholar 

  4. Peana AT, D’Aquila PS, Panin F, Serra G, Pippia P, Moretti MDL. Antiinflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine. 2002;9:721–6.

    Article  CAS  Google Scholar 

  5. Peana AT, D’Aquila PS, Chessa ML, Moretti MDL, Serra G, Pippia P. (−)-Linalool produces antinociception in two experimental models of pain. Eur J Pharmacol. 2003;460:37–41.

    Article  CAS  Google Scholar 

  6. Marreto RN, Almeida EECV, Alves PB, Niculau ES, Nunes RS, Matos CRS, Araújo AAS. Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropyl-β-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochim Acta. 2008;475:53–8.

    Article  CAS  Google Scholar 

  7. Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 2009;23(7):1631–40.

    Article  CAS  Google Scholar 

  8. Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 2013. doi:10.1016/j.addr.2013.05.001.

  9. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998;98(5):2045–76.

    Article  CAS  Google Scholar 

  10. Serafini MR, Menezes PP, Costa LP, Lima CM, Quintans LJ Jr, Cardoso JC, Matos JR, Soares-Sobrinho JL, Grangeiro S Jr, Nunes PS, Bonjadim LR, Araújo AAS. Interaction of p-cymene with β-cyclodextrin. J Thermal Anal Calorim. 2012;109:951–5.

    Article  CAS  Google Scholar 

  11. Ghosh I, Nau WM. The strategic use of supramolecular pK a shifts to enhance the bioavailability of drugs. Adv Drug Deliv Rev. 2012;64(9):764–83.

    Article  CAS  Google Scholar 

  12. Li J, Loh XJ. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev. 2008;60:1000–17.

    Article  CAS  Google Scholar 

  13. Cevallos PAP, Buera MP, Elizalde BE. Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. J Food Eng. 2010;99:70–5.

    Article  CAS  Google Scholar 

  14. Del Valle M. Cyclodextrins and their uses: a review. Process Biochem. 2004;39:1033–46.

    Article  Google Scholar 

  15. Xu P, Song LX, Wang HM. Study on thermal decomposition behavior of survived β-cyclodextrin in its inclusion complex of clove oil by nonisothermal thermogravimetry and gas chromatography coupled to time-of-flight mass spectrometry analyses. Thermochim Acta. 2008;469:36–42.

    Article  CAS  Google Scholar 

  16. Menezes PP, Serafini MR, Santana BV, Nunes RS, Quintans LJ Jr, Silva GF, Medeiros IA, Marchioro M, Fraga BP, Santos MRV, Araújo AAS. Solid-state β-cyclodextrin complexes containing geraniol. Thermochim Acta. 2012;548:45–50.

    Article  CAS  Google Scholar 

  17. Ciobanu A, Mallard I, Landy D, Brabie G, Nistor D, Fourmentin S. Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydr Polym. 2012;87:1963–70.

    Article  CAS  Google Scholar 

  18. The American Society for testing and materials. Philadelphia: Annual Book of ASTM Standards 14; 1993. p. 1582.

  19. Hădărugă DI, Hădărugă NG, Bandur GN, Isengard H-D. Water content of flavonoid/cyclodextrin nanoparticles: relationship with the structural descriptors of biologically active compounds. Food Chem. 2012;132:1651–9.

    Article  Google Scholar 

  20. Scirè S, Giuffrida S, Crisafulli C, Riccobene PM, Pistone A. Liquid phase photo-deposition in the presence of unmodified β-cyclodextrin: a new approach for the preparation of supported Pd catalysts. J Mol Catal A. 2012;353–354:87–94.

    Article  Google Scholar 

  21. Guo P, Su Y, Cheng Q, Pan Q, Li H. Crystal structure determination of the β-cyclodextrin–p-aminobenzoic acid inclusion complex from powder X-ray diffraction data. Carbohydr Res. 2011;346:986–90.

    Article  CAS  Google Scholar 

  22. Wang J, Cao Y, Sun B, Wang C. Physicochemical and release characterization of garlic oil-β-cyclodextrin inclusion complexes. Food Chem. 2011;127:1680–5.

    Article  CAS  Google Scholar 

  23. Songkro S, Hayook N, Jaisawang J, Maneenuan D, Chuchome T, Kaewnopparat N. Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem. 2012;72:339–55.

    Article  CAS  Google Scholar 

  24. Fujiwara T, Yamazaki M, Tomizu Y, Tokuoka R, Tomita K, Matsuo T. The crystal structure of a new form of β-cyclodextrin water inclusion compound and thermal properties of β-cyclodextrin inclusion complexes. Nippon Kagaku Kaishi. 1983;181:187.

    Google Scholar 

  25. Santos C, Buera MP, Mazzobre MF. Influence of ligand structure and water interactions on the physical properties of β-cyclodextrins complexes. Food Chem. 2012;132:2030–6.

    Article  Google Scholar 

  26. Hădărugă NG. Ficaria verna Huds. extracts and their β-cyclodextrin supramolecular systems. Chem Cent J. 2012;6:16.

    Article  Google Scholar 

  27. Haiyee ZA, Saim N, Said M, RMd Illias, Mustapha WAW, Hassan O. Characterization of cyclodextrin complexes with turmeric oleoresin. Food Chem. 2009;114:459–65.

    Article  CAS  Google Scholar 

  28. Martins AP, Craveiro AA, Machado MIL, Raffin FN, Moura TF, Novák Cs, Éhen Z. Preparation and characterization of mentha x villosa Hudson oil-β-cyclodextrin complex. J Thermal Anal Calorim. 2007;88(2):363–71.

    Article  CAS  Google Scholar 

  29. Zingone G, Rubessa F. Preformulation study of the inclusion complex warfarin-β-cyclodextrin. Int J Pharm. 2005;291:3–10.

    Article  CAS  Google Scholar 

  30. Kedzierewicz F, Hoffman M, Maincent P. Comparison of tolbutamide/β-cyclodextrin inclusion and solid dispersions compounds: physicochemical characteristics and dissolution studies. Int J Pharm. 1990;58:221.

    Article  CAS  Google Scholar 

  31. Byun Y, Whiteside S. Ascorbyl palmitate-β-cyclodextrin inclusion complex as an oxygen scavenging microparticle. Carbohydr Polym. 2012;87:2114–9.

    Article  CAS  Google Scholar 

  32. Pedersen M, Bjerregaard S, Jacobsen J, Larsen AR, SØrensen AM. An econazole-cyclodextrin inclusion complex: an unusual dissolution rate, supersaturation, and biological efficacy example. Int J Pharm. 1998;165:57–68.

    Article  CAS  Google Scholar 

  33. Bhandari BR, D’Arcy BR, Padukka I. Encapsulation of lemon oil by paste method using β-cyclodextrin: encapsulation efficiency and profile of oil volatiles. J Agric Food Chem. 1999;47:5194–7.

    Article  CAS  Google Scholar 

  34. Numanoğlu U, Şen T, Tarimci N, Kartal M, Koo OMY, Onyuksel H. Use of cyclodextrins as a cosmetic delivery system for fragrance materials: linalool and benzyl acetate. AAPS PharmSciTech. 2007;8(4):E85.

    Google Scholar 

  35. Quintans-Júnior LJ, Barreto RS, Menezes PP, Almeida JR, Viana AF, Oliveira RC, Oliveira AP, Gelain DP, de Lucca Júnior W, Araújo AAS. β-Cyclodextrin-complexed (−)-linalool produces antinociceptive effect superior to that of (−)-linalool in experimental pain protocols. Basic Clin Pharmacol Toxicol. 2013;113(3):167–72.

Download references

Acknowledgements

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq/Brazil) and Fundação de Amparo à Pesquisa do Estado de Sergipe/FAPITEC-SE for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. S. Araújo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menezes, P.P., Serafini, M.R., Quintans-Júnior, L.J. et al. Inclusion complex of (−)-linalool and β-cyclodextrin. J Therm Anal Calorim 115, 2429–2437 (2014). https://doi.org/10.1007/s10973-013-3367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3367-x

Keywords

Navigation