Skip to main content
Log in

Thermogravimetric analysis of peat decomposition under different oxygen concentrations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Smoldering combustion of peat is of global concern as a natural hazard to consume sequestered carbon and form wide-area haze. It is affected by thermal decomposition kinetics of peat and the diffusion and availability of oxygen. In this work, thermal decomposition behavior of peat was investigated using thermogravimetric analysis under the atmosphere with different oxygen concentrations. The results showed that thermal decomposition process of peat could be divided into three stages: dehydration, oxidative pyrolysis of organic matters into volatiles and char, and oxidation of the generated char. The apparent activation energies of peat decomposition under different oxygen concentrations were calculated by model-free methods of Kissinger, FWO, Starink, Gyulai, and Friedman. A two-step reaction model was proposed to describe thermal decomposition kinetics of peat (excluding dehydration stage) and the effect of oxygen concentration on the kinetic parameters was discussed. These results provide basic data for smoldering modeling of peat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

TG:

Thermogravimetry

DTG:

Derivative thermogravimetry (K−1)

E, E 1 , E 2 :

Apparent activation energy (kJ mol−1)

R :

Ideal gas constant, 8.314 J K−1 mol−1)

A, A 1, A 2 :

Arrhenius frequency factor

T :

Absolute temperature (K)

β :

Heating rate of decomposition (K min−1)

k 1, k 2 :

Reaction rate coefficients

P :

The initial mass of the peat removed moisture and mineral content

D, V 1 , V 2 :

Product of reaction

V 1, V 2 :

The mass loss (gas mass) of two-step reaction, respectively

m 0 , m :

The mass of beginning and end of peat decomposition (g)

r 1, r 2 :

Dimensionless parameter defined by Eq. (5)

n 1, n 2 :

Reaction order

OF:

Objective function

RSQ:

R-Squared

References

  1. Johnson EA, Miyanishi K. Forest fires: behavior and ecological effects. 1st ed. Elsevier: Academic Press; 2001.

    Google Scholar 

  2. Huang XY, Rein G. Smouldering combustion of peat: Inverse modelling of the thermal and oxidative degradation kinetics. Combust Flame. 2013; Accepted.

  3. Page SE, Siegert F, Rieley JO, Boehm HD, Jaya A, Limin S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature. 2002;420(6911):61–5.

    Article  CAS  Google Scholar 

  4. Rein G, Cleaver N, Ashton C, Pironi P, Torero JL. The severity of smouldering peat fires and damage to the forest soil. Catena. 2008;74(3):304–9.

    Article  Google Scholar 

  5. Rein G. Smouldering combustion phenomena in science and technology. Int Rev Chem Eng. 2009;1:3–18.

    Google Scholar 

  6. Rein G. Smouldering fires and natural fuels. In: Belcher CM, editor. Fire phenomena and the earth system: an interdisciplinary guide to fire science. Oxford: Wiley Online Library; 2013.

    Google Scholar 

  7. Petkova V, Serafimova E, Kaljuvee T, Pelovsky Y. Thermochemical characterization of chicken litter and peat as a source for energy recovery. J Therm Anal Calorim. 2012;113:683–92.

    Article  Google Scholar 

  8. Watts AC, Kobziar LN. Smoldering combustion and ground fires: ecological effects and multi-scale significance. Fire Ecol. 2013;9(1):124–32.

    Article  Google Scholar 

  9. Rein G. Smouldering fires in the earth system. EGU General Assembly Conference. 2012.

  10. Rein G, Cohen S, Simeoni A. Carbon emissions from smouldering peat in shallow and strong fronts. Proc Combust Inst. 2009;32(2):2489–96.

    Article  CAS  Google Scholar 

  11. Davies GM, Gray A, Rein G, Legg CJ. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. For Ecol Manage. 2013;308:169–77.

    Article  Google Scholar 

  12. Hadden RM, Rein G, Belcher CM. Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat. Proc Combust Inst. 2013;34(2):2547–53.

    Article  CAS  Google Scholar 

  13. Martinka J, Kačíková D, Hroncová E, Ladomerský J. Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions. J Therm Anal Calorim. 2012;110(1):193–8.

    Article  CAS  Google Scholar 

  14. Reardon J, Hungerford R, Ryan K. Factors affecting sustained smouldering in organic soils from pocosin and pond pine woodland wetlands. Int J Wildland Fire. 2007;16(1):107–18.

    Article  Google Scholar 

  15. Frandsen WH. Ignition probability of organic soils. Can J For Res. 1997;27:1471–7.

    Article  Google Scholar 

  16. Garlough EC, Keyes CR. Influences of moisture content, mineral content and bulk density on smouldering combustion of ponderosa pine duff mounds. Int J Wildland Fire. 2011;20:589–96.

    Article  Google Scholar 

  17. Benscoter BW, Thompson DK, Waddington JM, Flannigan MD, Wotton BM, De Groot WJ, et al. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils. Int J Wildland Fire. 2011;20(3):418–29.

    Article  CAS  Google Scholar 

  18. Frandsen WH, Hartford RA. Smoldering duff limits, heat evolved, and burn rate smoldering combustion limits in peat as influenced by moisture, mineral content, and organic bulk density. Proceedings of the Conference on Fire and Forest M: University of Montana; 1989.

  19. Grishin AM, Yakimov AS. Mathematical simulation of the process of peat ignition. J Eng Phys Thermophys. 2008;81(1):204–12.

    Article  CAS  Google Scholar 

  20. Belcher CM, Yearsley JM, Hadden RM, Mcelwain JC, Rein G. Baseline intrinsic flammability of earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences; 2010.

  21. Chen HX, Zhao WT, Liu NA. Thermal analysis and decomposition kinetics of chinese forest peat under nitrogen and air atmospheres. Energy Fuel. 2011;25(2):797–803.

    Article  CAS  Google Scholar 

  22. Cancellieri D, Leroy-Cancellieri V, Leoni E, Simeoni A, Kuzin AY, Filkov AI, et al. Kinetic investigation on the smouldering combustion of boreal peat. Fuel. 2012;93:479–85.

    Article  CAS  Google Scholar 

  23. Chen HX, Liu NA, Shu LF, Zong RW. Smoothing and differentiation of thermogravimetric data of biomass materials. J Therm Anal Calorim. 2004;78(3):1029–41.

    Article  CAS  Google Scholar 

  24. Moghtaderi B. The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels. Fire Mater. 2006;30(1):1–34.

    Article  CAS  Google Scholar 

  25. Barneto AG, Carmona JA, Martin JE, Blanco JD. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. J Anal Appl Pyrol. 2009;86(1):108–14.

    Article  CAS  Google Scholar 

  26. Font R, Fullana A, Conesa JA, Llavador F. Analysis of the pyrolysis and combustion of different sewage sludges by tg. J Anal Appl Pyrol. 2001;58:927–41.

    Article  Google Scholar 

  27. Barneto A, Carmona J, Alfonso JE, Alcaide L. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials. Bioresour Technol. 2009;100(17):3963–73.

    Article  CAS  Google Scholar 

  28. Chen HX, Liu NA, Fan WC. Two-step consecutive reaction model of biomass thermal decomposition by dsc. Acta Phys Chim Sin. 2006;22(7):786–90.

    Article  CAS  Google Scholar 

  29. Chen HX, Liu NA, Fan WC. Two-step consecutive reaction model and kinetic parameters relevant to the decomposition of chinese forest fuels. J Appl Polym Sci. 2006;102(1):571–6.

    Article  CAS  Google Scholar 

  30. Leoni E, Cancellieri D, Balbi N, Tomi P, Bernardini AF, Kaloustian J, et al. Thermal degradation of pinus pinaster needles by dsc, part 2: Kinetics of exothermic phenomena. J Fire Sci. 2003;21(2):117–30.

    Article  CAS  Google Scholar 

  31. Fang MX, Shen DK, Li YX, Yu CJ, Luo ZY, Cen KF. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using tg-ftir analysis. J Anal Appl Pyrol. 2006;77(1):22–7.

    Article  CAS  Google Scholar 

  32. Amutio M, Lopez G, Aguado R, Artetxe M, Bilbao J, Olazar M. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel. 2012;95(1):305–11.

    Article  CAS  Google Scholar 

  33. Liu QQ, Han XX, Li QY, Huang YR, Jiang XM. TG–DSC analysis of pyrolysis process of two Chinese oil shales. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3524-2.

  34. Meriste T, Yörük CR, Trikkel A, Kaljuvee T, Kuusik R. TG–FTIR analysis of oxidation kinetics of some solid fuels under oxy-fuel conditions. J Therm Anal Calorim. 2013;114(2):483–9.

    Article  CAS  Google Scholar 

  35. Vyazovkin S. Model-free kinetics—staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83(1):45–51.

    Article  CAS  Google Scholar 

  36. Laarhoven PJV, Aarts EH. Simulated annealing. Amsterdam: Springer; 1987.

    Book  Google Scholar 

  37. Audet C, Dennis JE. Analysis of generalized pattern searches. SIAM J Optim. 2003;13(3):889–903.

    Article  Google Scholar 

  38. Rein G, Lautenberger C, Fernandez-Pello AC, Torero JL, Urban DL. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust Flame. 2006;146(1–2):95–108.

    Article  CAS  Google Scholar 

  39. D’errico J. Fminsearchbnd-matlab. http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon. 2012.

  40. Shen DK. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2012;88(6):1024–30.

    Article  Google Scholar 

  41. Chen CX, Ma XQ, Liu K. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Appl Energy. 2011;88(9):3189–96.

    Article  CAS  Google Scholar 

  42. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70(6):487–523.

    Article  CAS  Google Scholar 

  43. Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288(1–2):97–104.

    Article  CAS  Google Scholar 

  44. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  45. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Part B-Polym Lett. 1969;7(1 PB):41–6.

    Article  CAS  Google Scholar 

  46. Gyulai G, Greenhow EJ. A new integral method for the kinetic analysis of thermogravimetric data. J Therm Anal Calorim. 1974;6(3):279–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (51176179 and 51120165001) and the National Basic Research Program of China (973 Program, No. 2012CB719702). Chen was supported by Fundamental Research Funds for the Central University (WK2320000020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Chen, H., Liu, N. et al. Thermogravimetric analysis of peat decomposition under different oxygen concentrations. J Therm Anal Calorim 117, 489–497 (2014). https://doi.org/10.1007/s10973-014-3696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3696-4

Keywords

Navigation