Skip to main content
Log in

Pulse annealing electron paramagnetic resonance with probing transition ions

Application to thermal formation and growth of nanoZnO

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The analysis of the sequence of electron paramagnetic resonance (EPR) spectra of trace amounts of substitutional probing paramagnetic ions incorporated in (nano)crystalline samples submitted to isothermal and isochronal pulse annealing treatments can offer a wealth of information on the thermally induced compositional and structural changes of the host material. The potential of this new thermal analysis method is illustrated here with results of such investigations on the thermal decomposition of crystalline zinc hydroxide (Zn(OH)2) and anhydrous zinc carbonate basic (Zn5(CO3)2(OH)6) precursors containing trace amounts of substitutional Mn2+ probing ions into nanostructured zinc oxide-ZnO. The quantitative analysis of the sequence of isochronal pulse annealing EPR spectra could provide, besides the thermal decomposition curves of the two precursors, additional information about the structure of the resulting nanostructured ZnO, some of it hard to get by standard structural diffraction techniques. The analysis of both isochronal and isothermal pulse annealing EPR data was further used to investigate the crystallization mechanism of the initially formed nanostructured disordered ZnO and to quantitatively describe the further growth of the resulting ZnO nanocrystals with the increasing annealing temperature and duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Speyer RF. Thermal analysis of materials. New York: Marcel Dekker; 1994.

    Google Scholar 

  2. Brown ME. Introduction to thermal analysis; techniques and applications. 2nd ed. AH Dordrecht: Kluwer Academic Publishers; 2001.

    Google Scholar 

  3. L’vov BV. Thermal decomposition of solids and melts—new thermochemical approach to the mechanism, kinetics and methodology. Berlin: Springer; 2007.

    Book  Google Scholar 

  4. Gabbott P. Principles and applications of thermal analysis. Oxford: Blackwell Publishing Ltd; 2008.

    Book  Google Scholar 

  5. Galwey AK. Theory of solid-state thermal decomposition reactions. J Therm Anal Calorim. 2012;109:1625–35.

    Article  CAS  Google Scholar 

  6. Orton JW. Electron paramagnetic resonance—an introduction to transition group ions in crystals. London: Ilffe Books Ltd; 1968.

    Google Scholar 

  7. Abragam A, Bleaney B. Electron paramagnetic resonance of transition ions. Oxford: Clarendon Press; 1970.

    Google Scholar 

  8. Pilbrow JR. Transition ion electron paramagnetic resonance. Oxford: Clarendon Press; 1990.

    Google Scholar 

  9. Beaulac R, Ochsenbein ST, Gamelin DR. Colloidal transition-metal-doped quantum dots. In: Klimov VI, editor. Nanocrystal quantum dots. Boca Raton: CRC Press; 2010. p. 397–453.

    Chapter  Google Scholar 

  10. Stefan M, Nistor SV. EPR probing of low temperature structural phases of Rb2 ZnCl4 with Tl0 and Tl2+ centers. Phys Rev B. 2004;69:104107 (11 pp) and references cited therein.

    Article  Google Scholar 

  11. Ghica D, Nistor SV, Nistor LC, Stefan M, Mateescu CD. Structural phase transformations in annealed cubic ZnS nanocrystals. J Nanopart Res. 2011;13:4325–35 and references cited therein.

    Article  CAS  Google Scholar 

  12. Heyndricks I, Goovaerts E, Nistor SV, Schoemaker D. Site-switched Tl0 atoms in Tl+ doped NaCl and KCl. Phys Rev B. 1986;33:1559–66.

    Article  Google Scholar 

  13. Nistor SV, Stefan M, Schoemaker D. Off-center displacement of Fe+ ions in irradiated SrCl2:Fe crystals grown in chlorine. Phys Status Solidi B. 1999;214:229–36.

    Article  CAS  Google Scholar 

  14. Ghica D, Nistor SV. High thermal stability of the off-center paramagnetic Fe2+ ions in chlorinated SrCl2:Fe2+ crystals. Rom Rep Phys. 2013;65:825–31 and references cited therein.

    CAS  Google Scholar 

  15. Nistor SV, Goovaerts E, Schoemaker D. Trapped hole Fe3+ centers in layered CdCl2:Fe crystals. J Phys Condens Matter. 1994;6:2619–30.

    Article  CAS  Google Scholar 

  16. Nistor SV, Goovaerts E, Schoemaker D. Temperature variation of the ESR parameters for the STEL center in PbCl2. Phys Rev B. 1995;52:12–5.

    Article  CAS  Google Scholar 

  17. Stefan M, Nistor SV, Goovaerts E, Nikl M, Bohachek P. Temperature dependence of the paramagnetic resonance spectra of Mn2+ impurity ions in PbWO4 single crystals. J Phys Condens Matter. 2005;17:719–28.

    Article  CAS  Google Scholar 

  18. Nistor SV, Ghiordanescu V, Voda M. ESR of doped CdCl2 single crystals. Phys Status Solidi B. 1976;78:K31–3.

    Article  CAS  Google Scholar 

  19. Stesmans A, Afanasiev VV. Thermally induced interface degradation in (100) and (111) Si/SiO2 analyzed by electron spin resonance. J Vac Sci Technol B. 1998;13:3108–11.

    Article  Google Scholar 

  20. Nistor SV, Stefan M, Schoemaker D, Dinca G. EPR observation of first point defects in cubic boron nitride crystalline powders. Solid State Commun. 2000;115:39–44.

    Article  CAS  Google Scholar 

  21. Lamonier J, Kulycova S, Zhilinskaya E, Aboukals A. Thermal analysis and epr studies of carbon black oxidation in the presence of cooper loaded Y2O3–CeO2–ZrO2 catalyst. J Therm Anal Calorim. 2004;75:857–65.

    Article  CAS  Google Scholar 

  22. Labanowska M, Weselucha-Birczynska A, Kurdziel M, Puch P. Thermal effects on the cereal starches. EPR and raman spectroscopy studies. Carbohydr Polym. 2012;92:842–8.

    Article  Google Scholar 

  23. Matta J, Courcot D, Abi-Aad E, Abaukais A. Thermal analysis, EPR and XPS studies of vanadyl (IV) oxalate behavior on the ceria surface. J Therm Anal Calorim. 2001;66:717–27.

    Article  CAS  Google Scholar 

  24. Nistor SV, Nistor LC, Stefan M, Ghica D, Aldica Gh, Barascu JN. Crystallization of disordered nanosized ZnO formed by thermal decomposition of nanocrystalline hydrozincite. Cryst Growth Des. 2011;11:5030–8.

    Article  CAS  Google Scholar 

  25. Stefan M, Nistor SV, Ghica D. Correlation of lattice disorder with crystallite size and the growth kinetics of Mn2+ doped ZnO nanocrystals probed by electron paramagnetic resonance. Cryst Growth Des. 2013;13:1350–9.

    Article  CAS  Google Scholar 

  26. Nistor SV, Ghica D, Stefan M, Vlaicu I, Barascu NJ, Bartha C. Magnetic defects in crystalline Zn(OH)2 and nanocrystalline ZnO resulting from its thermal decomposition. J Alloys Compd. 2013;48:222–7.

    Article  Google Scholar 

  27. Wang ZL. Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter. 2004;16:R929–58.

    Article  Google Scholar 

  28. Schmidt-Mende L, MacManus-Driscoll JL. ZnO- nanostructures, defects and devices. Mater Today. 2007;10:40–8.

    Article  CAS  Google Scholar 

  29. Morkoc H, Ozgur U. Zinc oxide: fundamentals, materials and device technology. Weinheim: WILEY-VCH; 2009.

    Book  Google Scholar 

  30. Klingshirn CF, Waag A, Hoffman A, Geurts J. Zinc oxide. Fundamental properties towards novel applications. Berlin: Springer Series in Materials Science, vol. 190, Springer; 2010.

  31. Kanari N, Mishra D, Gaballah I, Dupre B. Thermal decomposition of zinc carbonate hydroxide. Thermochim Acta. 2004;410:93–100.

    Article  CAS  Google Scholar 

  32. Vagvoelgyi V, Halws M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.

    Article  Google Scholar 

  33. Li YS, Li G, Wang SX, Gao H, Tan ZC. Preparation and characterization of nano-ZnO flakes prepared by reactive ion exchange method. J Therm Anal Calorim. 2009;95:671–4.

    Article  CAS  Google Scholar 

  34. Mickovic Z, Alexander DTL, Sienkiewicz A, Mionic M, Forro L, Magrez A. Synthesis of nanosized ZnO by low temperature decomposition of hydrozincite precursors. Cryst Growth Des. 2010;10:4437–45.

    Article  CAS  Google Scholar 

  35. Zhao X, Zhang F, Xu S, Evans DG, Duan X. From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and uv-blocking properties of the product. Chem Mater. 2010;22:3933–42.

    Article  CAS  Google Scholar 

  36. Moezzi A, McDonagh A, Dowd A, Cortie M. Zinc hydroxyacetate and its transformation to nanocrystalline zinc oxide. Inorg Chem. 2012;52:95–102.

    Article  Google Scholar 

  37. Hutera B, Kmita A, Olejnik E, Tokarski T. Synthesis of ZnO nanoparticles by thermal decomposition of basic zinc carbonate. Archiv Metall Mater. 2013;58:489–91.

    CAS  Google Scholar 

  38. Hu C, Mi J, Shang S, Shangguan J. The study of thermal decomposition kinetics of zinc oxide formation from zinc oxalate dihydrate. J Therm Anal Calorim. 2014;115:1119–25.

    Article  CAS  Google Scholar 

  39. Weil JA, Bolton J. Electron paramagnetic resonance. Elementary theory and practical applications. 2nd ed. Hoboken: Wiley; 2007.

    Google Scholar 

  40. Misra SK, editor. Multifrequency electron paramagnetic resonance –theory and applications. Weinheim: Wiley; 2011.

    Google Scholar 

  41. Rudowicz C, Chung CY. The generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elements. J Phys Condens Matter. 2004;16:5825–47.

    Article  CAS  Google Scholar 

  42. Nistor SV, Stefan M. In-depth investigation of Mn2+ ions EPR spectra in ZnS single crystals with pure cubic structure. J Phys Condens Matter. 2009;21:145408 (7 pp).

    Article  CAS  Google Scholar 

  43. Stefan M, Nistor SV, Barascu JN. Accurate determination of the spin Hamiltonian parameters for Mn2+ ions in cubic ZnS nanocrystals by multifrequency EPR spectra analysis. J Magn Reson. 2011;210:200–9.

    Article  CAS  Google Scholar 

  44. Diaconu M, Schmidt H, Poeppl A, Boettcher R, Hoentsch J, Klunker A, Spemann D, Hochmuth H, Lorentz M, Grundmann M. Electron paramagnetic resonance of Zn1-x MnxO thin films and single crystals. Phys Rev B. 2005;72:085214 (6 pp).

    Article  Google Scholar 

  45. Furduyana JK, Kossut J. Diluted magnetic semiconductors. In: Willardson RK, Ber AC, editors. Semiconductors and semimetals. New York: Academic Press; 1988.

    Google Scholar 

  46. Li Z, Shen X, Feng X, Wang P, Wu Z. Non-isothermal kinetics studies of the thermal decomposition of zinc hydroxide carbonate. Thermochim Acta. 2005;438:102–6.

    Article  CAS  Google Scholar 

  47. Nistor LC, Nistor SV, Ghica D. Low temperature TEM investigation of electron beam induced decomposition of nanocrystalline hydrozincite. Rom Rep Phys. 2013;65:186–92.

    CAS  Google Scholar 

  48. Avrami M. Granulation, phase change and microstructure—kinetics of phase change III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  49. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135:416–62.

    Google Scholar 

  50. Kolmogorov AN. On the statistical theory for the recrystallization of metals. Bull Acad Sci URSS (Cl Sci Math Nat). 1937;3:355–60.

    Google Scholar 

  51. Naglieri V, Joly-Pottuz L, Chevalier J, Lombardi M, Montanaro L. Follow-up of zirconia crystallization on the surface modified alumina powder. J Eur Ceram Soc. 2010;30:3377–87.

    Article  CAS  Google Scholar 

  52. Schmidt U, Eisenschmidt C, Vieweger T, Zahra CY, Zahra AM. Crystallization of amorphous AlDy- and AlDyCo-alloys. J Non-Cryst Solids. 2000;271:29–44.

    Article  CAS  Google Scholar 

  53. Nistor SV, Ghica D, Stefan M, Nistor LC. Sequential thermal decomposition of the shell of cubic ZnS/Zn(OH)2 core-shell quantum dots observed with Mn2+ probing ions. J Phys Chem C. 2013;117:2217–28.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Unitatea Executiva pentru Finantarea Invatamantului Superior a Cercetarii, Dezvoltarii si Inovarii, Project PNII-ID-74/2011. We would like to thank Leona C. Nistor and Ioana Vlaicu for contributions to the work contained within the manuscript. This article was written through equal contributions of all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nistor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nistor, S.V., Stefan, M. & Ghica, D. Pulse annealing electron paramagnetic resonance with probing transition ions . J Therm Anal Calorim 118, 1021–1031 (2014). https://doi.org/10.1007/s10973-014-3743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3743-1

Keywords

Navigation