Skip to main content
Log in

Energetic potential and kinetic behavior of peats

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Investigations were conducted with the aim to improve the energetic characterization of peats with different geological origin, hydrology, and botanical composition. Special attention was paid to the effects and kinetics of thermal treatment of peat decomposition in an oxidative atmosphere. Experiments were carried out using thermogravimetry, differential scanning calorimetry, and a calorimetric bomb. The present study shows that thermal decomposition process consists in a devolatilization step between 473 and 650 K and a combustion step between 650 and 773 K. Thermochemical properties (i.e., degree of decomposition, ultimate analysis, and heating value) were determined for each sample and correlated to thermal behavior. Based on the experimental results, the kinetic parameters for pyrolysis and combustion of boreal peat were estimated using a three-step model. The kinetic triplet of each reaction was estimated using the hybrid kinetic method Cancellieri et al. (Thermochim Acta 438:41–50, 2005). These results will assist in the development of an energetic classification of peat fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

M :

Mass of the sample (mg)

m 0 :

Initial sample mass (mg)

m :

Final sample mass (mg)

Δm :

Mass loss (%)

ΔH :

Reaction enthalpy (kJ kg−1)

T :

Temperature (K)

T :

Time (min)

Α :

Degree of conversion

Lv :

Heat of vaporization of water (kJ kg−1)

β :

Heating rate (K min−1)

R :

Gas constant = 8.314 J mol−1 K−1

f(α):

Kinetic model reaction

A :

Pre-exponential factor (s−1)

E a :

Activation energy (kJ mol−1)

UK 1:

Sample 1 from United Kingdom

RU 2:

Sample 2 from Russia

RU 3:

Sample 3 from Russia

References

  1. Cancellieri D, Leoni E, Rossi JL. Kinetics of the thermal degradation of Erica arborea by DSC: hybrid kinetic method. Thermochim Acta. 2005;438:41–50.

    Article  CAS  Google Scholar 

  2. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, et al. Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences. 2008;5:1475–91.

    Article  CAS  Google Scholar 

  3. World Energy Council. 2010 survey of energy resources. London: Word Energy Council; 2010. p. 608.

    Google Scholar 

  4. Tolonen J. The role of peat in Finnish greenhouse gas balances. Finland: Ministry of Trade and Industry; 2000. p. 71. Available on: http://cat.inist.fr/?aModele=afficheN&cpsidt=789607.

  5. Dennehy E, Howley M, O Gallachoir B. Energy security in Ireland: a statistical overview. Sustainable Energy Authory of Ireland; 2011.

  6. Rein G, Cohen S, Simeoni A. Carbon emissions from smouldering peat in shallow and strong fronts. Proc Combust Inst. 2009;32:2489–96.

    Article  CAS  Google Scholar 

  7. Chen H, Zhao W, Liu N. Thermal analysis and decomposition kinetics of Chinese forest peat under nitrogen and air atmospheres. Energy Fuels. 2011;25:797–803.

    Article  CAS  Google Scholar 

  8. Usup A, Hashimoto Y, Takahashi H, Hayasaka H. Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia. Tropics. 2004;14:1–19.

    Article  Google Scholar 

  9. Cancellieri D, Leroy-Cancellieri V, Leoni E, Simeoni A, Kuzin AY, Filkov AI, et al. Kinetic investigation on the smouldering combustion of boreal peat. Fuel. 2012;93:479–85.

    Article  CAS  Google Scholar 

  10. Granada E, Eguía P, Comesaña JA, Patiño D, Porteiro J, Miguez JL. Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels. J Therm Anal Calorim. 2013;113:569–78.

    Article  CAS  Google Scholar 

  11. Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci. 2008;34:47–90.

    Article  Google Scholar 

  12. Joosten H, Clark D. Background and principles including a framework for decision making. Wise use of mires and peatlands. International Mire Conservation Group and International Peat Society. Saarijärvi: NHBS Ltd; 2002.

  13. Rydin H, Jeglum JK, Hooijer A. The biology of peatlands. Oxford: Oxford University Press; 2006.

    Book  Google Scholar 

  14. Sheppard JD, Forgeron DW. Differential thermogravimetry of peat fractions. Fuel. 1987;66:232–6.

    Article  CAS  Google Scholar 

  15. Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B. A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev. 2012;16:3065–83.

    Article  CAS  Google Scholar 

  16. Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy. 2005;28:499–507.

    Article  CAS  Google Scholar 

  17. Telmo C, Lousada J. Heating values of wood pellets from different species. Biomass Bioenergy. 2011;35:2634–9.

    Article  CAS  Google Scholar 

  18. Boie W. Fuel technology calculations. Energietechnik. 1953;3:309–16.

    Google Scholar 

  19. Ringen S, Lanum J, Miknis F. Calculating heating values from elemental compositions of fossil fuels. Fuel. 1979;58:69–71.

    Article  CAS  Google Scholar 

  20. Vyazovkin S. Computational aspects of kinetic analysis: Part C. The ICTAC Kinetics Project—the light at the end of the tunnel? Thermochim Acta. 2000;355:155–63.

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    CAS  Google Scholar 

  22. Pratap A, Lilly Shanker Rao T, Lad K, Dhurandhar H. Isoconversional versus Model fitting methods. J Therm Anal Calorim. 2007;89:399–405.

    Article  CAS  Google Scholar 

  23. Leroy V, Cancellieri D, Leoni E, Rossi JL. Kinetic study of forest fuels by TGA: model-free kinetic approach for the prediction of phenomena. Thermochim Acta. 2010;497:1–6.

    Article  CAS  Google Scholar 

  24. Chrissafis K. Kinetics of thermal degradation of polymers. J Therm Anal Calorim. 2009;95:273–83.

    Article  CAS  Google Scholar 

  25. Aho MJ, Tummavuori JL, Hämäläinen JP, Saastamoinen JJ. Determination of heats of pyrolysis and thermal reactivity of peats. Fuel. 1989;68:1107–11.

    Article  CAS  Google Scholar 

  26. Holst LE, Andersson LA, Bjerle I. Investigation of peat pyrolysis under inert gas atmosphere. Fuel. 1991;70:1017–22.

    Article  CAS  Google Scholar 

  27. Muraleedharan TR, Radojevic M, Waughc A, Caruana A. Emissions from the combustion of peat: an experimental study. Atmos Environ. 2000;34:3033–5.

    Article  CAS  Google Scholar 

  28. Rein G. Smouldering combustion phenomena in science and technology. Int Rev Chem Eng. 2009;1:3–18.

    Google Scholar 

  29. Filkov AI, Kuzin AY, Sharypov OV, Leroy-Cancellieri V, Cancellieri D, Leoni E, et al. Comparative study to evaluate the drying kinetics of boreal peats from micro to macro scales. Energy Fuels. 2012;26:349–56.

    Article  CAS  Google Scholar 

  30. Leroy V, Cancellieri D, Leoni E. Thermal degradation of ligno-cellulosic fuels: DSC and TGA studies. Thermochim Acta. 2006;451:131–8.

    Article  CAS  Google Scholar 

  31. Dell’Abate MT, Benedetti A, Trinchera A, Dazzi C. Humic substances along the profile of two Typic Haploxerert. Geoderma. 2002;107:281–96.

    Article  Google Scholar 

  32. Provenzano MR, Senesi N. Thermal properties of standard and reference humic substances by differential scanning calorimetry. J Therm Anal Calorim. 1999;57:517–26.

    Article  CAS  Google Scholar 

  33. Leroy V, Cancellieri D, Leoni E. Relation between forest fuels composition and energy emitted during their thermal degradation. J Therm Anal Calorim. 2009;96:293–300.

    Article  CAS  Google Scholar 

  34. Stout SA, Boon JJ, Spackman W. Molecular aspects of the peatification and early coalification of angiosperm and gymnosperm woods. Geochim Cosmochim Acta. 1988;52:405–14.

    Article  CAS  Google Scholar 

  35. Vyazovkin SV, Lesnikovich AI. An approach to the solution of the inverse kinetic problem in the case of complex processes. Part 1. Methods employing a series of thermoanalytical curves. Thermochim Acta. 1990;165:273–80.

    Article  CAS  Google Scholar 

  36. Branca C, Di Blasi C. Kinetics of the isothermal degradation of wood in the temperature range 528–708 K. J Anal Appl Pyrol. 2003;67:207–19.

    Article  CAS  Google Scholar 

  37. Koufopanos CA, Lucchesi A, Maschio G. Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng. 1989;67:75–84.

    CAS  Google Scholar 

  38. Conesa JA, Domene A. Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions. Thermochim Acta. 2011;523:176–81.

    Article  CAS  Google Scholar 

  39. Hashimoto K, Hasegawa I, Hayashi J, Mae K. Correlations of kinetic parameters in biomass pyrolysis with solid residue yield and lignin content. Fuel. 2011;90:104–12.

    Article  CAS  Google Scholar 

  40. Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol. 2007;88:87–97.

    Article  CAS  Google Scholar 

  41. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: I. isothermal kinetic studies. Thermochim Acta. 2005;429:93–102.

    Article  CAS  Google Scholar 

  42. Cancellieri D, Innocenti E, Leroy-Cancellieri V. WinGPYRO: a software platform for kinetic study of forest fuels. Fire Saf J. 2013;58:103–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Leroy-Cancellieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroy-Cancellieri, V., Cancellieri, D., Leoni, E. et al. Energetic potential and kinetic behavior of peats. J Therm Anal Calorim 117, 1497–1508 (2014). https://doi.org/10.1007/s10973-014-3912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3912-2

Keywords

Navigation