Skip to main content
Log in

Characteristics of the Cu–18.84 at.%Al–10.28 at.%Mn–1.57 at.%Ag alloy after slow cooling from high temperatures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The characteristics of the Cu–18.84 at.%Al–10.28 at.%Mn–1.57 at.%Ag alloy after slow cooling from high temperatures were studied using optical and scanning electron microscopies, microhardness measurements with temperature, differential scanning calorimetry, X-ray diffraction, magnetic moment changes with temperature and applied field. The results indicated the presence of a new transition associated with dissolution of the Ag-rich phase. It was also verified that the content of Al strongly interferes with the magnetization of the Cu–18.84 at.%Al–10.28 at.%Mn–1.57 at.%Ag alloy, since at lower Al concentration the relative fraction of the ferromagnetic L21-(Cu2AlMn) phase is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Porter DA, Easterling KE. Phase transformations in metals and alloys. 2nd ed. Florida: CRC Press Taylor & Francis Group; 2004. p. 263.

    Google Scholar 

  2. Murray JL. The aluminium–copper system. Int Met Rev. 1985;30:211–33.

    Article  CAS  Google Scholar 

  3. Magdalena AG, Adorno AT, Silva RAG, Carvalho TM. Effect of Ag concentration on the thermal behavior of the Cu–10 mass% Al and Cu–11 mass% Al alloys. J Thermal Anal Calorim. 2009;97:47–51.

    Article  CAS  Google Scholar 

  4. Silva RAG, Machado ES, Adorno AT, Magdalena AG, Carvalho TM. Completeness of β-phase decomposition reaction in Cu–Al–Ag alloys. J Thermal Anal Calorim. 2012;109:927–31.

    Article  CAS  Google Scholar 

  5. Canbay CA, Keskin A. Effects of vanadium and cadmium on transformation temperatures of Cu–Al–Mn shape memory alloy. J Therm Anal Calorim. 2014;118:1407–12.

    Article  Google Scholar 

  6. Silva RAG, Paganotti A, Gama S, Adorno AT, Carvalho TM, Santos CMA. Investigation of thermal, mechanical and magnetic behaviors of the Cu–11 %Al alloy with Ag and Mn additions. Mater Char. 2013;75:194–9.

    Article  CAS  Google Scholar 

  7. Benedetti AV, Nakazato RZ, Sumodjo PTA, Cabot PL, Centellas FA, Garrido JA. Potentiodynamic behaviour of Cu–A1–Ag alloys in NaOH: a comparative study related to the pure metals electrochemistry. Electrochim Acta. 1991;36:1409–21.

    Article  CAS  Google Scholar 

  8. Adorno AT, Benedetti AV, Guerreiro MR. Isothermal aging kinetics in the Cu–19 at.%Al alloy. J Alloys Compd. 2001;315:150–7.

    Article  CAS  Google Scholar 

  9. Adorno AT, Silva RAG. Isothermal decomposition kinetics in the Cu–9 %Al–4 %Ag. J Alloys Compd. 2004;375:128–33.

    Article  CAS  Google Scholar 

  10. Bouchard M, Thomas G. Phase transitions and modulated structured in ordered (Cu-Mn)3Al alloys. Acta Metall. 1975;23:1485–500.

    Article  CAS  Google Scholar 

  11. Canbay CA, Karagoz Z. The effect of quaternary element on the thermodynamic parameters and structure of CuAlMn shape memory alloys. Appl Phys A. doi:10.1007/s00339-013-7880-3.

  12. Lu X, Chen F, Li W, Zheng Y. Effect of Ce addition on the microstructure and damping properties of Cu–Al–Mn shape memory alloys. J Alloys Compd. 2009;480:608–11.

    Article  CAS  Google Scholar 

  13. Obradó E, Frontera C, Mañosa L, Planes A. Order-disorder transitions of Cu–Al–Mn shape-memory alloys. Phys Rev B. 1998;58:14245–55.

    Article  Google Scholar 

  14. Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K. Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. J Alloys Compd. 1998;266:191–200.

    Article  CAS  Google Scholar 

  15. Yiping L, Murthy A, Hadjipanayis GC. Giant magnetoresistance in Cu–Mn–Al. Phys Rev B. 1996;54:3033–6.

    Article  CAS  Google Scholar 

  16. Marcos J, Planes A, Mañosa L, Labarta A, Hattink BJ. Magnetoelasticity and magnetoresistance in Cu–Al–Mn shape-memory alloys. IEEE Trans Magn. 2001;37:2712–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP and CNPq for financial support and the LME/LNLS for technical support during electron microscopy work (JSM-5900LV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. G. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.A.G., Paganotti, A., Adorno, A.T. et al. Characteristics of the Cu–18.84 at.%Al–10.28 at.%Mn–1.57 at.%Ag alloy after slow cooling from high temperatures. J Therm Anal Calorim 121, 1233–1238 (2015). https://doi.org/10.1007/s10973-015-4654-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4654-5

Keywords

Navigation