Skip to main content
Log in

Insight on thermal behaviour of new complexes of Ni(II), Cu(II) and Zn(II) with a bismacrocyclic ligand developed as biologically active species

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A multi-component reaction involving metal ion, amines and formaldehyde has been used for a series of decaaza bismacrocyclic complexes M2L(CH3COO)4·nH2O [(1) M: Ni, n = 2.5; (2) M:Cu, n = 1; (3) M:Zn, n = 10; L:1,3-bis(N,N-1,3,6,9,12-pentaazacyclotridecane)-benzene] preparation. Elemental analyses, ESI-MS, IR, UV–Vis–NIR, NMR and EPR spectra, magnetic susceptibility at room temperature, molar conductivities, as well as thermogravimetric analysis, provided data concerning complexes features. The macrocyclic ligand behaves as bischelate, resulting in either a square planar or an octahedral stereochemistry. The in vitro screening of the antimicrobial activity was performed against both reference and clinical isolates multi-drug-resistant strains. The overall antimicrobial potency of complexes was enhanced in comparison with the free ligand, against both planktonic and biofilm-embedded pathogenic strains. Complexes exhibit no cytotoxicity on the HCT 8 tumour cells. Thermogravimetric curves (TG, DTG and DTA) evidenced in air processes as water elimination, acetate into carbonate transformation as well as oxidative degradation of the bismacrocyclic ligand. The powder X-ray diffraction data indicate MO (M: Ni, Cu, Zn) as final product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schols D, Esté JA, Henson G, De Clercq E. Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Res. 1997;35:147–56.

    Article  CAS  Google Scholar 

  2. De Clercq E, Yamamoto N, Pauwels R, Balzarini J, Witvrouw M, De Vreese K, Debyser Z, Rosenwirth B, Peichl P, Datema R, Thornton D, Skerlj R, Gaul F, Admanabhan S, Bridger G, Henson G, Abrams M. Highly. potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM 3100. Antimicrob Agents Chemother. 1994;38:668–74.

    Article  Google Scholar 

  3. De Clercq E. New developments in anti-HIV chemotherapy. Biochim Biophys Acta. 2002;1587:258–75.

    Article  Google Scholar 

  4. Feig C, Jones JO, Kraman M, Wells RJB, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, Teichmann SA, Janowitz T, Jodrell DI, Tuveson DA, Fearon DT. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA. 2013;110:20212–7.

    Article  CAS  Google Scholar 

  5. Kaden TA. Dinuclear metal complexes of bis-macrocycles. Coord Chem Rev. 1999;190–192:371–89.

    Article  Google Scholar 

  6. Chartres JD, Lindoy LF, Meehan GV. Transition and post-transition metal systems incorporating linked synthetic macrocycles as structural elements. Coord Chem Rev. 2001;216–217:249–86.

    Article  Google Scholar 

  7. Bernhardt PV, Kim JY, Kim Y, Lee YH, Chow S. Macrocycles and medicine—facile synthesis of a bis(macrocycle) with pendent functionality. C R Chimie. 2005;8:211–4.

    Article  CAS  Google Scholar 

  8. Mewis RE, Archibald SJ. Biomedical applications of macrocyclic ligand complexes. Coord Chem Rev. 2010;254:1686–712.

    Article  CAS  Google Scholar 

  9. Drewry JA, Gunning PT. Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord Chem Rev. 2011;255:459–72.

    Article  CAS  Google Scholar 

  10. Salavati-Niasari M, Amiri A. Binuclear copper(II) complexes of new bis(macrocyclic) 16-membered pentaaza subunits are linked together by bridging nitrogen of amine: synthesis, characterization and catalytic activity. J Mol Catal A Chem. 2005;235:114–21.

    Article  CAS  Google Scholar 

  11. Salavati-Niasari M, Bazarganipour M. Bis(macrocyclic) copper(II) complexes containing aromatic nitrogen–nitrogen linkers produced by in situ one pot template condensation reaction (IOPTCR): synthesis, characterization and catalytic oxidation of tetrahydrofuran. Inorg Chem Commun. 2006;9:332–6.

    Article  CAS  Google Scholar 

  12. Salavati-Niasari M. 16-Membered pentaaza bis(macrocyclic)nickel(II) complexes containing aromatic nitrogen–nitrogen linkers, {[Ni([16]aneN5)]2R}(ClO4)4: synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen. J Mol Catal A Chem. 2007;272:207–12.

    Article  CAS  Google Scholar 

  13. Salavati-Niasari M, Mir N. Synthesis, characterization and catalytic oxidation of tetrahydrofuran with 16-membered pentaazabis(macrocyclic) copper(II) complexes; {[Cu([16]aneN5)]2R}4+ (R=aromatic nitrogen–nitrogen linkers). J Incl Phenom Macrocycl Chem. 2007;59:223–30.

    Article  CAS  Google Scholar 

  14. Collin JP, Jouaiti A, Sauvage JP. Electrocatalytic properties of (tetraazacyclotetradecane)nickel(2+) and Ni2(biscyclam)4+ with respect to carbon dioxide and water reduction. Inorg Chem. 1988;27:1986–90.

    Article  CAS  Google Scholar 

  15. Mochizuki K, Manaka S, Takeda I, Kondo T. Synthesis and structure of [6,60-bi(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecane)] dinickel(II) triflate and its catalytic activity for photochemical CO2 reduction. Inorg Chem. 1996;35:5132–6.

    Article  CAS  Google Scholar 

  16. de Alwis C, Crayston JA, Cromie T, Eisenblätter T, Hay RW, Lampeka YaD, Tsymbal LV. Cyclic voltammetry study of the electrocatalysis of carbon dioxide reduction by bis(polyazamacrocyclic)nickel complexes. Electrochim Acta. 2000;45:2061–74.

    Article  Google Scholar 

  17. Valks GC, McRobbie G, Lewis EA, Hubin TJ, Hunter TM, Sadler PJ, Pannecouque C, De Clercq E, Archibald SJ. Configurationally restricted bismacrocyclic CXCR4 receptor antagonists. J Med Chem. 2006;49:6162–5.

    Article  CAS  Google Scholar 

  18. McRobbie G, Valks GC, Empson CJ, Khan A, Silversides JD, Pannecouque C, De Clercq E, Fiddy SG, Bridgeman AJ, Young NA, Archibald SJ. Probing key coordination interactions: configurationally restricted metal activated CXCR4 antagonists. Dalton Trans. 2007;43:5008–18.

    Article  Google Scholar 

  19. Gerlach LO, Jakobsen JS, Jensen KP, Rosenkilde MR, Skerlj RT, Ryde U, Bridger GJ, Schwartz TW. Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor. Biochemistry. 2003;42:710–7.

    Article  CAS  Google Scholar 

  20. Hunter TM, McNae IW, Simpson DP, Smith AM, Moggach S, White F, Walkinshaw MD, Parsons S, Sadler PJ. Configurations of Nickel–cyclam antiviral complexes and protein recognition. Chem Eur J. 2007;13:40–50.

    Article  Google Scholar 

  21. Khan A, Nicholson G, Greenman J, Madden L, McRobbie G, Pannecouque C, De Clercq E, Ullom R, Maples DL, Maples RD, Silversides JD, Hubin TJ, Archibald SJ. Binding optimization through coordination chemistry: CXCR4 chemokine receptor antagonists from ultrarigid metal complexes. J Am Chem Soc. 2009;131:3416–7.

    Article  CAS  Google Scholar 

  22. Ross A, Soares DC, Covelli D, Pannecouque C, Budd L, Collins A, Robertson N, Parsons S, De Clercq E, Kennepohl P, Sadler PJ. Oxovanadium(IV) cyclam and bicyclam complexes: potential CXCR4 receptor antagonists. Inorg Chem. 2010;49:1122–32.

    Article  CAS  Google Scholar 

  23. Olar R, Badea M, Marinescu D, Calu L, Bucur C. Thermal behaviour of some new complexes with bismacrocyclic ligands as potential biological active species. J Therm Anal Calorim. 2011;105:571–5.

    Article  CAS  Google Scholar 

  24. Bucur C, Badea M, Calu L, Marinescu D, Grecu MN, Stanica N, Chifiriuc MC, Olar R. Thermal behaviour of some new complexes with decaaza bismacrocyclic ligand as potential antimicrobial species. J Therm Anal Calorim. 2012;110:235–41.

    Article  CAS  Google Scholar 

  25. Bucur C, Korošec RC, Badea M, Calu L, Chifiriuc MC, Grecu N, Stanică N, Marinescu D, Olar R. Investigation of thermal stability, spectral, magnetic, and antimicrobial behavior for new complexes of Ni(II), Cu(II), and Zn(II) with a bismacrocyclic ligand. J Therm Anal Calorim. 2013;113:1287–95.

    Article  CAS  Google Scholar 

  26. Bucur C, Badea M, Chifiriuc MC, Bleotu C, Iorgulescu EE, Badea IA, Grecu MN, Lazăr V, Patriciu O-I, Marinescu D, Olar R. Studies on thermal, spectral, magnetic and biological properties of new Ni(II), Cu(II) and Zn(II) complexes with a bismacrocyclic ligand bearing an aromatic linker. J Therm Anal Calorim. 2014;115:2179–89.

    Article  CAS  Google Scholar 

  27. Rastogi A, Nayan R. Studies on copper(II) complexes of some polyaza macrocycles derived from 1,2-diaminoethane. J Coord Chem. 2009;62:3366–76.

    Article  CAS  Google Scholar 

  28. Deacon GB, Philips JR. Relationships between the carbon–oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.

    Article  CAS  Google Scholar 

  29. Zeleńák V, Vargová Z, Györyová K, Večerníková E, Balek V. Cooper(II) acetates with aliphatic/heterocycles amines coupled TG-DTA-EGA study, IR characterization and structure correlation. J Therm Anal Calorim. 2005;82:747–54.

    Article  Google Scholar 

  30. Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.

    Article  CAS  Google Scholar 

  31. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Part B. Applications in coordination, organometallic, and bioinorganic chemistry. 6th ed. New Jersey: Wiley; 2009.

    Google Scholar 

  32. Solomon EI, Lever ABP. Inorganic electronic structure and spectroscopy. Applications and case studies. New York: Wiley; 2006.

    Google Scholar 

  33. Gispert JR. Coordination chemistry. Weinheim: Wiley-VCH; 2008.

    Google Scholar 

  34. Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.

    Article  CAS  Google Scholar 

  35. Yousef TA. Abu El-Reash GM, El-Gammal OA, Bedier RA. Co(II), Cu(II), Cd(II), Fe(III) and U(VI) complexes containing a NSNO donor ligand: synthesis, characterization, optical band gap, in vitro antimicrobial and DNA cleavage studies. J Mol Struct. 2012;1029:149–60.

    Article  CAS  Google Scholar 

  36. Dametto PR, Ambrozini B, Caires FJ, Franzini VP, Ionashiro M. Synthesis, characterization and thermal behaviour of solid-state compounds of folates with some bivalent transition metals ions. J Therm Anal Calorim. 2014;115:161–6.

    Article  CAS  Google Scholar 

  37. Kharadi GJ. Molar conductance, magnetic susceptibility, mass spectra, and thermal decomposition studies on Cu(II) compounds with substituted terpyridines and clioquinol drug. J Therm Anal Calorim. 2014;117:333–41.

    Article  CAS  Google Scholar 

  38. Zeleńák V, Vargová Z, Györyová K, Večerníková E, Balek V. Cooper(II) acetates with aliphatic/heterocycles amines coupled TG-DTA-EGA study, IR characterization and structure correlation. J Therm Anal Calorim. 2005;82:747–54.

    Article  Google Scholar 

  39. Singh K, Kumar Y, Pari P, Kumar M, Sharma C. Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazol-4-carboxyaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies. Eur J Med Chem. 2012;52:313–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the magnetic measurements to researcher Nicolae Stanică from “Ilie Murgulescu” Physical Chemistry Institute of Romanian Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Olar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badea, M., Bucur, C., Chifiriuc, M.C. et al. Insight on thermal behaviour of new complexes of Ni(II), Cu(II) and Zn(II) with a bismacrocyclic ligand developed as biologically active species. J Therm Anal Calorim 127, 487–497 (2017). https://doi.org/10.1007/s10973-016-5502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5502-y

Keywords

Navigation