Skip to main content
Log in

Silk-silk blend materials

A comparative study of Mori-Tussah, Mori-Muga, Mori-Eri, and Mori-Thai silk films

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Silk fibroin materials can be used as various kinds of biomedical materials. Here, we report a comparative study of silk-silk blend materials using thermal analysis and infrared spectroscopy. Four groups of silk-silk blend films were fabricated from aqueous solutions by blending Chinese Bombyx mori (Mori) with Indian Antheraea mylitta (Tussah) silk fibroin (Mori-Tussah), Mori with Antheraea assama (Muga) silk fibroin (Mori-Muga), Mori with Philosamia ricini (Eri) silk fibroin (Mori-Eri), and Mori with Thailand mulberry (Thai) silk fibroin (Mori-Thai), respectively. These silk-silk blend systems exploit the beneficial material properties of both silks. Glass transition temperatures (T g), heat capacity increments at T g, and degradation temperatures (T d) of these water-based silk-silk blend films were measured by differential scanning calorimetry (DSC) and temperature-modulated DSC (TMDSC). It was found that those silk-silk film systems were well-blended without macrophase separation. And glass transition temperatures and degradation temperatures of those silk-silk blend films can be controlled by changing the mass ratio of different silks in the blend system. Fourier transform infrared spectrometer (FTIR) was used to characterize secondary structures of silk-silk blends. The contents of alpha-helix and random coils are tunable through changing the contents of Tussah, Muga, Eri, or Thai silk in the blend system. The study demonstrates that Mori silk are fully miscible with Tussah, Muga, Eri, and Thai silk at different mass ratios, and the features of Mori silk combined with the attributes of Tussah, Muga, Eri, and Thai silk offer a useful suite of materials for a variety of applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaplan D, McGrath K. Protein-based materials. Berlin: Springer Science & Business Media; 2012.

    Google Scholar 

  2. Ha S-W, Gracz HS, Tonelli AE, Hudson SM. Structural study of irregular amino acid sequences in the heavy chain of bombyx Mori silk fibroin. Biomacromolecules. 2005;6(5):2563–9.

    Article  CAS  Google Scholar 

  3. Jin H-J, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature. 2003;424(6952):1057–61.

    Article  CAS  Google Scholar 

  4. Heinz A, Jung MC, Duca L, Sippl W, Taddese S, Ihling C, et al. Degradation of tropoelastin by matrix metalloproteinases–cleavage site specificities and release of matrikines. FEBS J. 2010;277(8):1939–56.

    Article  CAS  Google Scholar 

  5. Hu X, Lu Q, Sun L, Cebe P, Wang X, Zhang X, et al. Biomaterials from ultrasonication-induced silk fibroin—hyaluronic acid hydrogels. Biomacromolecules. 2010;11(11):3178–88.

    Article  CAS  Google Scholar 

  6. Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science. 2010;329(5991):528–31.

    Article  CAS  Google Scholar 

  7. Zhang J, Rajkhowa R, Li J, Liu X, Wang X. Silkworm cocoon as natural material and structure for thermal insulation. Mater Des. 2013;49:842–9.

    Article  Google Scholar 

  8. Hu X, Wang X, Rnjak J, Weiss AS, Kaplan DL. Biomaterials derived from silk–tropoelastin protein systems. Biomaterials. 2010;31(32):8121–31.

    Article  CAS  Google Scholar 

  9. Cebe P, Hu X, Kaplan DL, Zhuravlev E, Wurm A, Arbeiter D et al. Beating the heat-fast scanning melts silk beta sheet crystals. Scientific reports. 2013;3.

  10. Wang X, Yucel T, Lu Q, Hu X, Kaplan DL. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials. 2010;31(6):1025–35.

    Article  CAS  Google Scholar 

  11. Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL. Protein-based composite materials. Mater Today. 2012;15(5):208–15.

    Article  CAS  Google Scholar 

  12. Ekemen Z, Ahmad Z, Stride E, Kaplan D, Edirisinghe M. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials. Biomacromolecules. 2013;14(5):1412–22.

    Article  CAS  Google Scholar 

  13. Miwa Y, Usami K, Yamamoto K, Sakaguchi M, Sakai M, Shimada S. Direct detection of effective glass transitions in miscible polymer blends by temperature-modulated differential scanning calorimetry. Macromolecules. 2005;38(6):2355–61.

    Article  CAS  Google Scholar 

  14. Park S-H, Gil ES, Shi H, Kim HJ, Lee K, Kaplan DL. Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials. 2010;31(24):6162–72.

    Article  CAS  Google Scholar 

  15. Kim U-J, Park J, Kim HJ, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26(15):2775–85.

    Article  CAS  Google Scholar 

  16. Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL. Structure and properties of silk hydrogels. Biomacromolecules. 2004;5(3):786–92.

    Article  CAS  Google Scholar 

  17. Motta A, Maniglio D, Migliaresi C, Kim H-J, Wan X, Hu X, et al. Silk fibroin processing and thrombogenic responses. J Biomater Sci Polym Ed. 2009;20(13):1875–97.

    Article  CAS  Google Scholar 

  18. Mazzi S, Zulker E, Buchicchio J, Anderson B, Hu X. Comparative thermal analysis of Eri, Mori, Muga, and Tussar silk cocoons and fibroin fibers. J Therm Anal Calorim. 2014;116(3):1337–43.

    Article  CAS  Google Scholar 

  19. Wang F, Wolf N, Rocks E-M, Vuong T, Hu X. Comparative studies of regenerated water-based Mori, Thai, Eri, Muga and Tussah silk fibroin films. J Therm Anal Calorim. 2015;122(3):1069–1076.

    Article  CAS  Google Scholar 

  20. Pyda M, Hu X, Cebe P. Heat capacity of silk fibroin based on the vibrational motion of poly (amino acid) s in the presence and absence of water. Macromolecules. 2008;41(13):4786–93.

    Article  CAS  Google Scholar 

  21. Hu X, Park S-H, Gil ES, Xia X-X, Weiss AS, Kaplan DL. The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials. Biomaterials. 2011;32(34):8979–89.

    Article  CAS  Google Scholar 

  22. Wunderlich B, Jin Y, Boller A. Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta. 1994;238:277–93.

    Article  CAS  Google Scholar 

  23. Boller A, Okazaki I, Ishikiriyama K, Zhang G, Wunderlich B. Determination of cell asymmetry in temperature-modulated DSC. J Therm Anal Calorim. 1997;49(2):1081–8.

    Article  CAS  Google Scholar 

  24. Mao B, Cebe P. Avrami analysis of melt crystallization behavior of Trogamid. J Therm Anal Calorim. 2013;113(2):545–50.

    Article  CAS  Google Scholar 

  25. Xu H, Cebe P. Heat capacity study of isotactic polystyrene: dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules. 2004;37(8):2797–806.

    Article  CAS  Google Scholar 

  26. Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta (BBA) Bioenergetics. 2007;1767(9):1073–101.

    Article  CAS  Google Scholar 

  27. Barth A, Zscherp C. What vibrations tell about proteins. Q Rev Biophys. 2002;35(04):369–430.

    Article  CAS  Google Scholar 

  28. Jung C. Insight into protein structure and protein–ligand recognition by Fourier transform infrared spectroscopy. J Mol Recognit. 2000;13(6):325–51.

    Article  CAS  Google Scholar 

  29. Hu X, Shmelev K, Sun L, Gil E-S, Park S-H, Cebe P, et al. Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules. 2011;12(5):1686–96.

    Article  CAS  Google Scholar 

  30. Hu X, Kaplan D, Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules. 2006;39(18):6161–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nathan Wolf and Eva-Marie Rocks for their support and assistance with this project. This study was supported by the Rowan University Start-up Grants, NSF-MRI Program (DMR-1338014), and New Jersey Space Grant Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Jao, D., Hu, W. et al. Silk-silk blend materials. J Therm Anal Calorim 127, 915–921 (2017). https://doi.org/10.1007/s10973-016-5699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5699-9

Keywords

Navigation