Skip to main content
Log in

Thermal behaviour of sym-octahydroacridines and their corresponding N(10)-oxides

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We present and discuss results on the thermal behaviour of 1,2,3,4,5,6,7,8-octahydroacridine (OHA), together with six 9-substituted congeners, i.e. R = –Br, –OCH3, –NH2, –NO2, –OH, and furyl (–C4H3O), and their corresponding N(10)-oxides, under nitrogen atmosphere and with alumina as reference, at a heating rate of 5 °C min−1 from room temperature to 300 °C. Chromatography has been carried out on aluminium sheets, with aluminium oxide 60 F254 neutral (Merck). Melting effects are observed for almost all compounds in their corresponding curves, precisely determined by using a Boetius apparatus. Homolysis of the carbon-substituent bond occurs in most cases, a phenomenon which is consistent with the values of the bond dissociation energy. For all compounds, except for hydroxyl congeners, thermal decomposition started with an endothermic peak. Octahydroacridines readily decompose into volatile products, an effect which correlates with their low melting points, while little amounts of residue remain in place of the aromatic amines compared to the N(10)-oxides. The presence of N–O bonds greatly influences the thermal stability of the compound, in the sense of increasing it compared with the parent amine. Quantitative studies of the decomposition products reveal that the melting points, the 9-position substituent, and N–O bond all play an important role upon the thermal behaviour. Mechanistic/kinetic pathways are also proposed as such results are important in further designing laser processing protocols, i.e. matrix-assisted pulsed laser evaporation (MAPLE) or laser-induced forward transfer (LIFT), for thin film deposition and/or device printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adrien A. “The acridines: their preparation, physical, chemical, and biological properties and uses”. London: Eward Arnold & Co; 1951.

    Google Scholar 

  2. Acheson RM. Chemistry of heterocyclic compounds: acridines. 2nd ed. New York: Wiley; 1973. ISBN 0-471-37753-8.

    Book  Google Scholar 

  3. Popp FD. Polyphosphoric acid in the bernthsen reaction. J Org Chem. 1962;27:2658–9. doi:10.1021/jo01054a518.

    Article  CAS  Google Scholar 

  4. Rogness DC, Larock RC. Synthesis of acridines by the [4 + 2] annulation of arynes and 2-aminoaryl ketones. J Org Chem. 2010;75:2289–95. doi:10.1021/jo1000687.

    Article  CAS  Google Scholar 

  5. Guo HM, Mao RZ, Wang QT, Niu HY, Xie MS, Qu GR. Pd(II)-catalyzed one-pot, three-step route for the synthesis of unsymmetrical acridines. Org Lett. 2013;15:5460–3. doi:10.1021/ol402596g.

    Article  CAS  Google Scholar 

  6. Su Q, Li P, He M, Wu Q, Ye L, Mu Y. Facile synthesis of acridine derivatives by ZnCl2-promoted intramolecular cyclization of o-arylaminophenyl schiff bases. Org Lett. 2014;16:18–21. doi:10.1021/ol402732n.

    Article  CAS  Google Scholar 

  7. Tanasescu I. Preparation of acridones (and 10-hydroxyacridones) from o-nitrobenzaldehyde and a halobenzene in the presence of concentrated sulfuric acid containing nitrous acid as catalyst. Bull Soc Chim Fr. 1927;41:528.

    CAS  Google Scholar 

  8. Lehmstedt K. Eine einfache synthese des acridons und 3-substituierter acridone (IX. Mitteil. über Acridin). Ber Dtsch Chem Ges. 1932;65:834–9. doi:10.1002/cber.19320650531.

    Article  Google Scholar 

  9. Nalwa HS. “Organic materials for third-order nonlinear optics”. Adv Mater. 1993;5:341–58. doi:10.1002/adma.19930050504.

    Article  CAS  Google Scholar 

  10. Molinos-Gomez A, Vidal X, Maymo M, Velasco D, Martorell J, Lopez-Calahorra F. Tautomeric enhancement of the hyperpolarizability in new acridine-benzothiazolylamine based NLO chromophores. Tetrahedron. 2005;61:9075–81. doi:10.1016/j.tet.2005.07.045.

    Article  CAS  Google Scholar 

  11. Avci D, Comert H, Atalay Y. Ab initio Hartree-Fock calculations on linear and second-order nonlinear optical properties of new acridine-benzothiazolylamine chromophores. J Mol Model. 2008;14:161–9. doi:10.1007/s00894-007-0258-8.

    Article  CAS  Google Scholar 

  12. Masamune T. The ultraviolet absorption spectra of stereoisomeric 1,2,3,4,9,10,4a,91-octahydroacridines and related compounds. J Am Chem Soc. 1957;79:4418–23. doi:10.1021/ja01573a048.

    Article  CAS  Google Scholar 

  13. Ion V, Matei A, Constantinescu C, Ionita I, Marinescu M, Dinescu M, Emandi A. Octahydroacridine thin films grown by matrix-assisted pulsed laser evaporation for non-linear optical applications. Mater Sci Semicond Process. 2015;36:78–83. doi:10.1016/j.mssp.2015.02.064.

    Article  CAS  Google Scholar 

  14. Marinescu M, Tablet C, Potmischil F, Hillebrand M. Experimental and theoretical study of the interaction of 3-carboxy-5,6-benzocoumarin with some 1,2,3,4,5,6,7,8-octahydroacridines and the corresponding N-oxides. Spectrochim Acta A. 2011;81:560–9. doi:10.1016/j.saa.2011.06.051.

    Article  CAS  Google Scholar 

  15. Potmischil F, Marinescu M, Loloiu T. Hydroacridines: XXVIII. Syntheses of new 9-substituted 1,2,3,4,5,6,7,8-octahydroacridine derivatives and their N(10)-oxides. Rev Chim. 2007;58:795–8.

    CAS  Google Scholar 

  16. Potmischil F, Marinescu M, Nicolescu A, Deleanu C, Hillebrand M. Hydroacridines: part 29. 15N NMR chemical shifts of 9-substituted 1,2,3,4,5,6,7,8-octahydroacridines and their N-oxides—Taft, Swain–Lupton, and other types of linear correlations. Magn Reson Chem. 2008;46:1141–7. doi:10.1002/mrc.2335.

    Article  CAS  Google Scholar 

  17. Potmischil F, Marinescu M, Nicolescu A, Deleanu C. Hydroacridines: part 30. 1H and 13C NMR spectra of 9-substituted 1,2,3,4,5,6,7,8-octahydroacridines and of their N-oxides. Magn Reson Chem. 2009;47:1031–5. doi:10.1002/mrc.2507.

    Article  CAS  Google Scholar 

  18. Hegde V, Madhukar P, Madura JD, Thummel RP. Fischer route to pyrido [3,2-g] indoles. A novel receptor for urea derivatives. J Am Chem Soc. 1990;112:4549–50. doi:10.1021/ja00167a066.

    Article  CAS  Google Scholar 

  19. Hegde V, Hung CY, Madhukar P, Cunningham R, Höpfner T, Thummel RP. Design of receptors for urea derivatives based on the pyrido [3,2-g] indole subunit. J Am Chem Soc. 1993;115:872–8. doi:10.1021/ja00056a008.

    Article  CAS  Google Scholar 

  20. Kneeland DM, Ariga K, Lynch VM, Huang CY, Anslyn EV. Bis(alkylguanidinium) receptors for phosphodiesters: effect of counterions, solvent mixtures, and cavity flexibility on complexation. J Am Chem Soc. 1993;115:10042–55. doi:10.1021/ja00075a021.

    Article  CAS  Google Scholar 

  21. Kelly-Rowley AM, Lynch VM, Anslyn EV. Molecular recognition of enolates of active methylene compounds in acetonitrile. The interplay between complementarity and basicity and the use of hydrogen bonding to lower guest pKas. J Am Chem Soc. 1995;117:3438–47. doi:10.1021/ja00117a013.

    Article  CAS  Google Scholar 

  22. Bell TW, Hou Z, Zimmerman SC, Thiessen PA. Highly effective hydrogen-bonding receptors for guanine derivatives. Angew Chem Int Ed. 1995;34:2163–5. doi:10.1002/anie.199521631.

    Article  CAS  Google Scholar 

  23. Bell TW, Hext NM, Khasanov AB. Binding biomolecules with designed, hydrogen-bonding receptors. Pure Appl Chem. 1998;70:2371–7. doi:10.1351/pac199870122371.

    Article  CAS  Google Scholar 

  24. Bell TW, Cragg PJ, Drew MGB, Firestone A, Kwok ADI, Liu J, Ludwig RT, Papoulis AT. Synthesis of new torands and new uses for old torands. Pure Appl Chem. 1993;65:361–6. doi:10.1351/pac199365030361.

    Article  CAS  Google Scholar 

  25. Bejan E, Fontenas C, Haddou HA, Daran JC, Balavoine GGA. Synthesis of highly soluble annelated polypyridines. Eur J Org Chem. 1999;10:2485–90. doi:10.1002/(SICI)1099-0690(199910)1999:10<2485:AID-EJOC2485>3.0.CO;2-8.

    Article  Google Scholar 

  26. Thummel RP, Jahng Y. Polyaza cavity shaped molecules. 4. Annelated derivatives of 2,2′:6′,2″-terpyridine. J Org Chem. 1985;50:2407–12. doi:10.1021/jo00214a001.

    Article  CAS  Google Scholar 

  27. Thummel RP. The application of friedländer and fischer methodologies to the synthesis of organized polyaza cavities. Synlett. 1992;1992:1–12. doi:10.1055/s-1992-21249.

    Article  Google Scholar 

  28. Taffarel E, Chirayil S, Thummel RP. Synthesis and properties of ligands based on benzo[g]quinolone. J Org Chem. 1994;59:823–8. doi:10.1021/jo00083a024.

    Article  CAS  Google Scholar 

  29. Keuper R, Risch N. Facile synthesis of polycyclic pyridines, bipyridines, and oligopyridines. Liebigs Annalen. 1996;1996:717–23. doi:10.1002/jlac.199619960512.

    Article  Google Scholar 

  30. Jona E, Lajdova L, Kvasnicova L, Lendvayova S, Pajtasova M, Ondrusova D, Lizak P, Mojumdar SC. Thermal properties of solid complexes with biologically important heterocyclic ligands. Part III. Thermal decomposition and infrared spectra of thiocyanato Mg(II) complexes with 2-hydroxypyridine, quinoline and quinoxaline. J Therm Anal Calorim. 2011;104:817–21. doi:10.1007/s10973-011-1310-6.

    Article  CAS  Google Scholar 

  31. Jona E, Lajdova L, Loduhova M, Lendvayova S, Pavlik V, Moncol J, Lizak P, Mojumdar SC. Thermal properties of solid complexes with biologically important heterocyclic ligands. Part IV. Thermal and spectra properties of 2-chloro- and 2-bromobenzoato Cu(II) complexes with nicotinamide and different bonded water molecules. J Therm Anal Calorim. 2012;108:921–6. doi:10.1007/s10973-012-2365-8.

    Article  CAS  Google Scholar 

  32. Harmatova Z, Jona E, Medvecka J, Valigura D, Mojumdar SC. Thermal properties of solid complexes with biologically important heterocyclic ligands. J Therm Anal Calorim. 2015;119:915–9. doi:10.1007/s10973-014-4114-7.

    Article  CAS  Google Scholar 

  33. Zheng W, Xu W, Wang Y, Chen Z. The theoretical assessment and prediction of C–Br bond dissociation enthalpies. Comput Theor Chem. 1027;2014:116–24. doi:10.1016/j.comptc.2013.11.012.

    Google Scholar 

  34. Baciocchi E. Side-chain reactivity of aromatic radical cations. Acta Chem Scand. 1990;44:645–52. doi:10.3891/acta.chem.scand.44-0645.

    Article  CAS  Google Scholar 

  35. Marinescu M, Zalaru C, Florea M, Ionita P. Thermal behavior of several stable hydrazyl free radicals and of their parent hydrazines. J Therm Anal Calorim. 2014;116:259–63. doi:10.1007/s10973-013-3448-x.

    Article  CAS  Google Scholar 

  36. Zhu C, Rui L, Fu Y. Homolytic bond dissociation enthalpies of C–C and C–H bonds in highly crowded alkanes. Chin J Chem. 2008;26:1493–500. doi:10.1002/cjoc.200890270.

    Article  CAS  Google Scholar 

  37. Acree WE, Pilcher G, Ribeiro da Silva MDMC. The dissociation enthalpies of terminal (N–O) bonds in organic compounds. J Phys Chem Ref Data. 2005;34:553–72. doi:10.1063/1.1851531.

    Article  CAS  Google Scholar 

  38. Łukomska M, Rybarczyk-Pirek AJ, Jabłoński M, Palusiak M. The nature of NO-bonding in N-oxide group. Phys Chem Chem Phys. 2015;17:16375–87. doi:10.1039/C5CP02148K.

    Article  Google Scholar 

  39. Sheraz MA, Kazi SH, Ahmed S, Anwar Z, Ahmad I. Photo, thermal and chemical degradation of riboflavin. Beilstein J Org Chem. 2014;10:1999–2012. doi:10.3762/bjoc.10.208.

    Article  Google Scholar 

  40. Razaczynska Z, Danczowska-Burdon A, Sienkiewicz-Gromiuk J. Thermal and spectroscopic properties of light lanthanides (III) and sodium complexes of 2,5-pyridinedicarboxylic acid. J Therm Anal Calorim. 2010;101:671–7. doi:10.1007/s10973-010-0941-3.

    Article  Google Scholar 

  41. Juhász M, Kitahara Y, Takahashi S, Fujii T. Study of the thermal stability properties of pyridoxine using thermogravimetric analysis. Anal Lett. 2012;45:1519–25. doi:10.1080/00032719.2012.675491.

    Article  Google Scholar 

  42. Lippert T. Chapter 7: “UV laser ablation of polymers: from structuring to thin film deposition”. In: Miotello A, Ossi PM, editors. “Laser-surface interactions for new materials production”. Springer, Berlin; 2010. p. 141–175. ISBN: 978-3-642-03306-3 (Print) 978-3-642-03307-0 (Online). doi: 10.1007/978-3-642-03307-0_7.

  43. Fardel R, Nagel M, Nüesch F, Lippert T, Wokaun A, Luk’yanchuk B. “Infuence of thermal diffusion on the laser ablation of thin polymer films”. Appl Phys A Mater Sci Process. 2008;90(4):661–7. doi:10.1007/s00339-007-4334-9.

    Article  CAS  Google Scholar 

  44. Rapp L, Constantinescu C, Delaporte P, Alloncle AP. Laser-induced forward transfer of polythiophene-based derivatives for fully polymeric thin film transistors. Org Electron. 2014;15:1868–75. doi:10.1016/j.orgel.2014.04.029.

    Article  CAS  Google Scholar 

  45. Constantinescu C, Rapp L, Rotaru P, Delaporte P, Alloncle AP. Pulsed laser processing of poly(3,3‴-didodecyl quarter thiophene) semiconductor for organic thin film transistors. Chem Phys. 2015;450–451:32–8. doi:10.1016/j.chemphys.2015.02.004.

    Article  Google Scholar 

  46. Constantinescu C, Rotaru A, Nedelcea A, Dinescu M. Thermal behavior and matrix-assisted pulsed laser evaporation deposition of functional polymeric materials thin films with potential use in optoelectronics. Mater Sci Semicond Process. 2015;30:242–9. doi:10.1016/j.mssp.2014.10.011.

    Article  CAS  Google Scholar 

  47. Constantinescu C, Vizireanu S, Ion V, Aldica G, Stoica SD, Lazea-Stoyanova A, Alloncle AP, Delaporte P, Dinescu G. Laser-induced forward transfer of carbon nanowalls for soft electrodes fabrication. Appl Surf Sci. 2016;. doi:10.1016/j.apsusc.2015.09.089.

    Google Scholar 

  48. Constantinescu C, Rapp L, Rotaru P, Delaporte P, Alloncle AP. Polyvinylphenol (PVP) microcapacitors printed by laser-induced forward transfer (LIFT): multilayered pixel design and thermal analysis investigations. J Phys D Appl Phys. 2016;49:155301. doi:10.1088/0022-3727/49/15/155301.

    Article  Google Scholar 

  49. Zweifel GS, Nantz MH. Modern organic synthesis: an introduction. 1st ed. New York: W.H. Freeman and Co.; 2007. ISBN 978-0-716-77266-8.

    Google Scholar 

  50. Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. The Diels–Alder reaction in total synthesis. Angew Chem Int Ed. 2002;41:1668–98. doi:10.1002/1521-3773(20020517)41:10<1668:AID-ANIE1668>3.0.CO;2-Z.

    Article  CAS  Google Scholar 

  51. Das A, Maher JP, McCleverty JA, Navas Badiola JA, Ward MD. Metal–metal interactions across symmetrical bipyridyl bridging ligands in binuclear seventeen-electron molybdenum complexes. J Chem Soc Dalton Trans. 1993;681–686. doi: 10.1039/DT9930000681.

  52. Sakurai A, Midorikawa H. The cyclization of ethyl acetoacetate and ketones by ammonium acetate. Bull Chem Soc Japan. 1968;41:165–7. doi:10.1246/bcsj.41.165.

    Article  CAS  Google Scholar 

  53. Katritzky AR, Nichols DA, Siskin M, Murugan R, Balasubramanian M. Reactions in high-temperature aqueous media. Chem Rev. 2001;101:837–92. doi:10.1021/cr960103t.

    Article  CAS  Google Scholar 

  54. Luches A, Piqué A, Zhigilei LV, editors. Special issue on “Matrix-assisted pulsed laser evaporation: fundamentals and applications”. Appl Phys A. 2011;105:517–671. ISSN: 0947-8396 (Print)/1432-0630 (Online).

  55. Nagel M, Lippert T. Chapter 5.4: Laser-induced forward transfer for the fabrication of devices. In: Singh SC, Zeng H, Guo C, Cai W, editors. Nanomaterials. Processing and characterization with lasers. Weinheim: Wiley; 2012. doi:10.1002/9783527646821.ch5. ISBN 978-3-527-32715-7.

    Google Scholar 

  56. Shaw-Stewart J, Lippert T, Nagel M, Nüesch F, Wokaun A. A simple model for flyer velocity from laser-induced forward transfer with a dynamic release layer. Appl Surf Sci. 2012;258:9309–13. doi:10.1016/j.apsusc.2011.08.111.

    Article  CAS  Google Scholar 

  57. Constantinescu C, Morintale E, Ion V, Moldovan A, Luculescu C, Dinescu M, Rotaru P. Thermal, morphological and optical investigations of Cu(DAB)2 thin films produced by matrix-assisted pulsed laser evaporation and laser-induced forward transfer for sensor development. Thin Solid Films. 2012;520:3904–9. doi:10.1016/j.tsf.2012.01.039.

    Article  CAS  Google Scholar 

  58. Tabetah M, Matei A, Constantinescu C, Mortensen NP, Dinescu M, Schou J, Zhigilei LV. The minimum amount of ‘matrix’ needed for matrix-assisted pulsed laser deposition of biomolecules. J Phys Chem B. 2014;118:13290–9. doi:10.1021/jp508284n.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Marinescu or Catalin Constantinescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinescu, M., Potmischil, F., Florea, M. et al. Thermal behaviour of sym-octahydroacridines and their corresponding N(10)-oxides. J Therm Anal Calorim 131, 117–125 (2018). https://doi.org/10.1007/s10973-016-5862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5862-3

Keywords

Navigation